【題目】(2017貴州省遵義市)如圖,拋物線a<0,ab為常數(shù))與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),直線AB的函數(shù)關(guān)系式為

(1)求該拋物線的函數(shù)關(guān)系式與C點(diǎn)坐標(biāo);

(2)已知點(diǎn)Mm,0)是線段OA上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Mx軸的垂線l分別與直線AB和拋物線交于DE兩點(diǎn),當(dāng)m為何值時(shí),BDE恰好是以DE為底邊的等腰三角形?

(3)在(2)問條件下,當(dāng)BDE恰好是以DE為底邊的等腰三角形時(shí),動(dòng)點(diǎn)M相應(yīng)位置記為點(diǎn)M,將OM繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在90°之間);

①探究:線段OB上是否存在定點(diǎn)PP不與O、B重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;

②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.

【答案】(1)C(1,0);(2)m=﹣4;(3)①存在,P(0,3);

【解析】試題分析:(1)根據(jù)已知條件得到B,A的坐標(biāo),解方程組得到拋物線的函數(shù)關(guān)系式,令y=0,于是得到C的坐標(biāo);

(2)由點(diǎn)Mm,0),過點(diǎn)Mx軸的垂線l分別與直線AB和拋物線交于D、E兩點(diǎn),得到Dm,),當(dāng)DE為底時(shí),作BGDEG,根據(jù)等腰三角形的性質(zhì)得到EG=GD=EDGM=OB=,列方程即可得到結(jié)論;

(3)①根據(jù)已知條件得到ON=OM′=4,OB=,由NOP=∠BON,特殊的當(dāng)NOP∽△BON時(shí),根據(jù)相似三角形的性質(zhì)得到,于是得到結(jié)論;

根據(jù)題意得到N在以O為圓心,4為半徑的半圓上,由知,,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此時(shí)N,AP三點(diǎn)共線,根據(jù)勾股定理得到結(jié)論.

試題解析:(1)在中,令x=0,則y=,令y=0,則x=﹣6,

B(0,),A(﹣6,0),

B(0,),A(﹣6,0)代入,

,

拋物線的函數(shù)關(guān)系式為:,

y=0,則=0,

x1=﹣6,x2=1,

C(1,0);

(2)∵點(diǎn)Mm,0),過點(diǎn)Mx軸的垂線l分別與直線AB和拋物線交于DE兩點(diǎn),

Dm,),

當(dāng)DE為底時(shí),作BGDEG,則EG=GD=ED,GM=OB=

=,解得:m1=﹣4,m2=9(不合題意,舍去),

當(dāng)m=﹣4時(shí),BDE恰好是以DE為底邊的等腰三角形;

(3)①存在,

ON=OM′=4,OB=,

∵∠NOP=∠BON,

當(dāng)NOP∽△BON時(shí),,

不變,即OP==3,

P(0,3);

②∵N在以O為圓心,4為半徑的半圓上,由知,

NP=NB,

∴(NA+NB)的最小值=NA+NP

此時(shí)N,A,P三點(diǎn)共線,

∴(NA+NB)的最小值==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞員開摩托車從總部A點(diǎn)出發(fā),在一條南北公路上來回收取包裹,現(xiàn)在記錄下他連續(xù)行駛的情況(以向南為正方向,單位:千米):52,-4,,3-2.5,6.請(qǐng)問

1)他最后一次收取包裹后在出發(fā)點(diǎn)A的什么位置?

2)如果摩托車每千米耗油30毫升,出發(fā)前摩托車有油1000毫升,快遞員在收完包裹后能回到總部嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包荒山若干畝,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售元,在果園每千克售.該農(nóng)戶將水果拉到市場(chǎng)出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100元.

1)分別用表示兩種方式出售水果的收入.

2)若元,元,且兩種方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過計(jì)算說明選擇哪種出售方式較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于AB兩點(diǎn),P是弧上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB=α,則點(diǎn)P的坐標(biāo)是

A. sinα,sinα B. cosα,cosα C. cosα,sinα D. sinα,cosα

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類,同學(xué)們可根據(jù)自己的情況必選且只選其中一類.?dāng)?shù)據(jù)收集整理后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

(1)請(qǐng)通過計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖;

(2)請(qǐng)直接寫出扇形統(tǒng)計(jì)圖中“享受美食”所對(duì)應(yīng)圓心角的度數(shù)為  

(3)根據(jù)調(diào)查結(jié)果,可估計(jì)出該校九年級(jí)學(xué)生中減壓方式的眾數(shù)和中位數(shù)分別是  ,  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為個(gè)單位的圓片上有一點(diǎn)與數(shù)軸上的原點(diǎn)重合,是圓片的直徑.(注:結(jié)果保留

把圓片沿?cái)?shù)軸向左滾動(dòng)半周,點(diǎn)到達(dá)數(shù)軸上點(diǎn)的位置,點(diǎn)表示的數(shù)是________數(shù)(填無理有理),這個(gè)數(shù)是________

圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:,,,

________次滾動(dòng)后,點(diǎn)距離原點(diǎn)最遠(yuǎn)

當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),此時(shí)點(diǎn)所表示的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,點(diǎn)分別為的中點(diǎn),則線段

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的A,B,C三點(diǎn)所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點(diǎn)O的位置應(yīng)該在(

A.點(diǎn)A的左邊

B.點(diǎn)A與點(diǎn)B之間

C.點(diǎn)B與點(diǎn)C之間(靠近點(diǎn)B)

D.點(diǎn)C的右邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組為了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息解答下列問題:

(1)課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,經(jīng)常參加所對(duì)應(yīng)的圓心角的度數(shù)為_____;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有1000名男生,小明認(rèn)為全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為1000×=90”,請(qǐng)你判斷這種說法是否正確,并說明理由.

(4)若要從被調(diào)查的從不參加課外體育鍛煉的男生中隨機(jī)選擇10名同學(xué)組成課外活動(dòng)小組,則從不參加活動(dòng)的小王被選中的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案