【題目】已知把直線y=kx+b(k≠0)沿著y軸向上平移3個單位后,得到直線y=﹣2x+5.

(1)求直線y=kx+b(k≠0)的解析式;

(2)求直線y=kx+b(k≠0)與坐標軸圍成的三角形的周長.

【答案】1y=2x+2;(23+

【解析】

1)根據(jù)題意求出平移后解析式;

2)根據(jù)解析式進而得出圖象與坐標軸交點,再利用勾股定理得出斜邊長,進而得出答案.

(1)直線y=kx+b(k≠0)沿著y軸向上平移3個單位后,得到直線y=2x+5

可得:直線y=kx+b的解析式為:y=2x+53=2x+2;

(2)在直線y=2x+2中,當x=0,則y=2,當y=0,則x=1

∴斜邊= ,

∴直線l與兩條坐標軸圍成的三角形的周長為:2+1+ =3+.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.

優(yōu)惠

條件

一次性購物不超過200

一次性購物超過200元,但不超過500

一次性購物超過500

優(yōu)惠

辦法

沒有優(yōu)惠

全部按九折優(yōu)惠

其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠

小欣媽媽兩次購物分別用了134元和490元.

1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?

2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電子跳蚤游戲盤是如圖所示的△ABCAB=AC=BC=5.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1= CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2= AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3= BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點為Pnn為正整數(shù)),則點P2016與點P2017之間的距離為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中點的坐標為(1,0),過點作x軸的垂線交直線y=2x于,過點作直線y=2x的垂線交x軸于,過點作x軸的垂線交直線y=2x于…,依此規(guī)律,則的坐標為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB6 cm,BC8 cm,點EBC邊上一點,連接AE,并將AEB沿AE折疊,得到AEB′,以C,EB′為頂點的三角形是直角三角形時,BE的長為____cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBC,ADDB,下列條件中: ①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④∠DAC=∠CBD,能使△ABC≌△BAD的有_____(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=-2x+2的圖象與軸、軸分別交于點、,以線段為直角邊在第一象限內(nèi)作等腰直角三角形ABC,且,則點C坐標為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是人類最偉大的十個科學發(fā)現(xiàn)之一,西方國家稱之為畢達哥拉斯定理,但遠在畢達哥拉斯出生之前,這一定理早已被人們所利用,世界上各個文明古國都對勾股定理的發(fā)現(xiàn)和研究作出過貢獻(希臘、中國、埃及、巴比倫、印度等),特別是定理的證明,據(jù)說有400余種方法.其中在《幾何原本》中有一種證明勾股定理的方法:如圖所示,作CG⊥FH,垂足為G,交AB于點P,延長FA交DE于點S,然后將正方形ACED、正方形BCNM作等面積變形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,這樣就可以完成勾股定理的證明.對于該證明過程,下列結(jié)論錯誤的是( 。

A. △ADS≌△ACB B. SACQS=S矩形APGF

C. SCBTQ=S矩形PBHG D. SE=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=4,點EBC上一點,且tan∠BAE=,點FCD的中點,連接AE、BF△ABE著點E按順時針方向旋轉(zhuǎn),使點B落在BF上的B1處位置處,點A經(jīng)過旋轉(zhuǎn)落在A1點位置處,連接AA1BF于點N.

(1)求證:∠BFC=∠A1 B1F;

(2)說明點NAA1的中點;

(3)求AN的長.

查看答案和解析>>

同步練習冊答案