【題目】勾股定理是人類(lèi)最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,西方國(guó)家稱(chēng)之為畢達(dá)哥拉斯定理,但遠(yuǎn)在畢達(dá)哥拉斯出生之前,這一定理早已被人們所利用,世界上各個(gè)文明古國(guó)都對(duì)勾股定理的發(fā)現(xiàn)和研究作出過(guò)貢獻(xiàn)(希臘、中國(guó)、埃及、巴比倫、印度等),特別是定理的證明,據(jù)說(shuō)有400余種方法.其中在《幾何原本》中有一種證明勾股定理的方法:如圖所示,作CG⊥FH,垂足為G,交AB于點(diǎn)P,延長(zhǎng)FA交DE于點(diǎn)S,然后將正方形ACED、正方形BCNM作等面積變形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,這樣就可以完成勾股定理的證明.對(duì)于該證明過(guò)程,下列結(jié)論錯(cuò)誤的是(  )

A. △ADS≌△ACB B. SACQS=S矩形APGF

C. SCBTQ=S矩形PBHG D. SE=BC

【答案】D

【解析】分析:根據(jù)“ASA”可證明△ADS≌△ACB,從而A正確;由△ADS≌△ACB可得AS=AB=AF,ACQS與矩形APGF等底同高,從而面積相等,故B正確;與B同理可得C正確;由S不一定是DE的中點(diǎn),所以SEBC不一定相等,故D錯(cuò)誤.

詳解:A、∵四邊形ADEC是正方形,

AD=ACDAS+∠SAC=SAC+∠CAB=90°,

∴∠DAS=BAC,

∵∠D=ACB=90°,

∴△ADS≌△ACB;

A正確;

B、∵△ADS≌△ACB,

AS=AB=AF

FSGQ,

SACQS=S矩形APGF,

B正確;

C、同理可得:SCBTQ=S矩形PBHG

C正確;

D、∵△ADS≌△ACB,

DS=BC,

S不一定是DE的中點(diǎn),所以SEBC不一定相等,

D錯(cuò)誤,

本題選擇結(jié)論錯(cuò)誤的,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中A2,﹣1),B4,3),C1,2

1)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△ABC,ABC的對(duì)應(yīng)點(diǎn)分別為ABC,畫(huà)出△ABC,并寫(xiě)出ABC的坐標(biāo);

2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知把直線(xiàn)y=kx+b(k≠0)沿著y軸向上平移3個(gè)單位后,得到直線(xiàn)y=﹣2x+5.

(1)求直線(xiàn)y=kx+b(k≠0)的解析式;

(2)求直線(xiàn)y=kx+b(k≠0)與坐標(biāo)軸圍成的三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A(6 ,0),點(diǎn)B(0,18),BAO=60°,射線(xiàn)AC平分∠BAOy軸正半軸于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)點(diǎn)N從點(diǎn)A以每秒2個(gè)單位的速度沿線(xiàn)段AC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)Nx軸的垂線(xiàn),分別交線(xiàn)段AB于點(diǎn)M,交線(xiàn)段AO于點(diǎn)P,設(shè)線(xiàn)段MP的長(zhǎng)度為d,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,請(qǐng)求出dt的函數(shù)關(guān)系式(直接寫(xiě)出自變量t的取值范圍);

(3)(2)的條件下,將△ABO沿y軸翻折,點(diǎn)A落在x軸正半軸上的點(diǎn)E,線(xiàn)段BE交射線(xiàn)AC于點(diǎn)D,點(diǎn)Q為線(xiàn)段OB上的動(dòng)點(diǎn),當(dāng)△AMN與△OQD全等時(shí),求出t值并直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列函數(shù):①; ②; ③.從中任取一個(gè)函數(shù),取出的函數(shù)符合條件“當(dāng)時(shí),函數(shù)值增大而減小”的概率是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為災(zāi)區(qū)開(kāi)展了獻(xiàn)出我們的愛(ài)賑災(zāi)捐款活動(dòng),九年級(jí)(1)班50名同學(xué)積極參加了這次賑災(zāi)捐款活動(dòng),因不慎,表中數(shù)據(jù)有一處被墨水污染,已無(wú)法看清,但已知全班平均每人捐款38.

捐款(元)

10

15

30

50

60

人數(shù)

3

6

11

11

13

6

1)根據(jù)以上信息可知,被污染處的數(shù)據(jù)為 .

2)該班捐款金額的眾數(shù)為 ,中位數(shù)為 .

3)如果用九年級(jí)(1)班捐款情況作為一個(gè)樣本,請(qǐng)估計(jì)全校2000人中捐款在40元以上(包括40元)的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)碼產(chǎn)品專(zhuān)賣(mài)店的一塊攝像機(jī)支架如圖所示,將該支架打開(kāi)立于地面MN上,主桿AC與地面垂直,調(diào)節(jié)支架使得腳架BE與主桿AC的夾角∠CBE=45°,這時(shí)支架CD與主桿AC的夾角∠BCD恰好等于60°,若主桿最高點(diǎn)A到調(diào)節(jié)旋鈕B的距離為40cm.支架CD的長(zhǎng)度為30cm,旋轉(zhuǎn)鈕D是腳架BE的中點(diǎn),求腳架BE的長(zhǎng)度和支架最高點(diǎn)A到地面的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)yx4x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰RtOAB,并將RtAOB沿x軸向右平移,當(dāng)點(diǎn)B落在直線(xiàn)yx4上時(shí),RtOAB掃過(guò)的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,半徑OAOB,過(guò)OA的中點(diǎn)CFDOB交⊙OD、F兩點(diǎn),且CD,以O為圓心,OC為半徑作,交OBE點(diǎn).則圖中陰影部分的面積為______________

查看答案和解析>>

同步練習(xí)冊(cè)答案