【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______

【答案】①③②③

【解析】

已知①③條件,先證明BEO≌△CDO再證明ABC=∠ACB最后得到ABC是等腰三角形;已知②③條件可證明BEO≌△CDO,再證明ABC是等腰三角形.

①③或②③.

由①③證明ABC是等腰三角形.

BEOCDO中,

∵∠EBODCOEOBDOC,BECD.

BEO≌△CDO,

BOCO

OBCOCB,

EBOOBCDCOOCB,

即∠ABCACB,

ABAC.

因此ABC是等腰三角形.

由②③證明ABC是等腰三角形.

BEOCDO中,

∵∠BEO=∠CDO,BECD,∠EOB=∠DOC,

∴△BEO≌△CDO

BOCO,

OBCOCB,

EBOOBCDCOOCB,

即∠ABCACB,ABAC.

∴△ABC是等腰三角形.

故答案為:①③或②③.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在同一條直線上,M,N分別為BE,CD的中點.

(1)求證:△ABE≌ACD;

(2)判斷△AMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E

1)證明:四邊形ACDE是平行四邊形;

2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備組織部分學生到少年宮參加活動,陳老師從少年宮帶回來兩條信息:

信息一:按原來報名參加的人數(shù),共需要交費用320元,如果參加的人數(shù)能夠增加到原來人數(shù)的2倍,就可以享受優(yōu)惠,此時只需交費用480元;

信息二:如果能享受優(yōu)惠,那么參加活動的每位同學平均分攤的費用比原來少4元.

根據(jù)以上信息,原來報名參加的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好地治理水質,保護環(huán)境,某污水處理公司決定購買10臺污水處理設備,現(xiàn)有AB兩種設備可供選擇,月處理污水分別為240m3/月、200m3/月.經(jīng)調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少8萬元.

1A、B兩種型號的設備每臺的價格是多少?

2)若污水處理公司購買設備的預算資金不超過125萬元,你認為該公司有哪幾種購買方案?

3)若每月需處理的污水約2040m3,在不突破(2)中資金預算的前提下,為了節(jié)約資金,又要保證治污效果,請你為污水處理公司設計一種最省錢的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.

(1)求證:CD是⊙O的切線.
(2)若 ,求∠E的度數(shù).
(3)連接AD,在(2)的條件下,若CD= ,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,E是邊DC上一點,連接AEBC的延長線于點H,點F是邊AB上一點,使得,作的角平分線BH于點G,若,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面夾角是45°時,教學樓頂部A在地面上的影子F與墻角C的距離為18m(B、F、C在同一直線上).求教學樓AB的高;(結果保留整數(shù))(參考數(shù)據(jù):sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)

查看答案和解析>>

同步練習冊答案