已知矩形ABCD中,AB=1,在BC上取一點E,AE將△ABE向上折疊,使B點落在AD上的F點.若四邊形EFDC與矩形ABCD相似,則AD=______.
∵AB=1,
設AD=x,則FD=x-1,F(xiàn)E=1,
∵四邊形EFDC與矩形ABCD相似,
EF
FD
=
AD
AB
,
1
x-1
=
x
1
,
解得x1=
5
+1
2
,x2=
1-
5
2
(不合題意舍去),
經(jīng)檢驗x1=
5
+1
2
是原方程的解.
故答案為
5
+1
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD中,AD=,F(xiàn)是DA延長線上一點,G是CF上一點,且∠ACG=∠AGC,∠GAF=∠F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC,將線段AC繞著點C逆時針旋轉(zhuǎn)得到線段CD,旋轉(zhuǎn)角為,且,連接AD、BD.
(1)如圖1,當∠BAC=100°,時,∠CBD 的大小為_________;
(2)如圖2,當∠BAC=100°,時,求∠CBD的大。
(3)已知∠BAC的大小為m(),若∠CBD 的大小與(2)中的結(jié)果相同,請直接寫出的大。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)
如圖,的外接圓,,過點,交的延長線于點

(1)求證:的切線;
(2)若的半徑,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

若矩形ABCD能以某種方式分割成n個小矩形,使得每個小矩形都與原矩形ABCD相似,則此時我們稱矩形ABCD可以自相似n分割,已知AB=1,BC=x(x≥1),
(1)若下圖可以自相似2分割,請在圖中畫出分割草圖,并求出x的值.
(2)若矩形ABCD可以自相似3分割,請畫出兩種不同分割的草圖,并直接寫出相應的x值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀下面的短文,并解答下列問題:
我們把相似形的概念推廣到空間:如果兩個幾何體大小不一定相等,但形狀完全相同,就把它們叫做相似體.
如圖,甲、乙是兩個不同的正方體,正方體都是相似體,它們的一切對應線段之比都等于相似比(a:b).
設S、S分別表示這兩個正方體的表面積,則
S
S
=
6a2
6b2
=(
a
b
2
又設V、V分別表示這兩個正方體的體積,則
V
V
=
a3
b3
=(
a
b
3
(1)下列幾何體中,一定屬于相似體的是(A)
A.兩個球體B.兩個錐體C.兩個圓柱體D.兩個長方體
(2)請歸納出相似體的三條主要性質(zhì):
①相似體的一切對應線段(或。╅L的比等于______;
②相似體表面積的比等于______;
③相似體體積比等于______.
(3)假定在完全正常發(fā)育的條件下,不同時期的同一人的人體是相似體,一個小朋友上幼兒園時身高為1.1米,體重為18千克,到了初三時,身高為1.65米,問他的體重是多少?(不考慮不同時期人體平均密度的變化)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

把一個矩形剪去一個正方形,所余的矩形與原矩形相似,那么原矩形的長與寬的比是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若如圖所示的兩個四邊形相似,則∠α的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,將△ABC沿AC邊所在直線向右平移x個單位,記平移后的對應三角形為△DEF,連接BE.
(1)當x=4時,求四邊形ABED的周長;
(2)當x為何值時,△BED是等腰三角形?
 

查看答案和解析>>

同步練習冊答案