【題目】如圖,∠BAC=60°,AD平分∠BAC交⊙O于點(diǎn)D,連接OB、OC、BD、CD.
(1)求證:四邊形OBDC是菱形;
(2)當(dāng)∠BAC為多少度時(shí),四邊形OBDC是正方形?
【答案】(1)詳見解析;(2)當(dāng)∠BAC為45度時(shí),四邊形OBDC是正方形,理由詳見解析.
【解析】
(1)連接OD,由AD平分∠BAC可求得∠BAD=∠DAC=30°,再根據(jù)同弧所對的圓周角是圓心角的一半可知∠BOD=∠DOC=60°,從而求得△BOD和△COD都是等邊三角形,即可得出結(jié)論.
(2)若使菱形為正方形則只需使一個(gè)內(nèi)角為90°即可,可求得∠BAC 為45°.
(1)證明:連接OD,
∵∠BAC=60°,AD平分∠BAC
∴∠BAD=∠DAC=30°,
∴∠BOD=∠COD=60°,
由圓半徑相等可知OB=OD=OC,
∴△BOD和△COD都是等邊三角形,
∴OB=BD=DC=OC,
∴四邊形OBDC是菱形;
(2)解:當(dāng)∠BAC為45度時(shí),四邊形OBDC是正方形,
理由是:若∠BAC=45°,
則∠BOC=90°,
∵四邊形OBDC是菱形,
∴四邊形OBDC是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周長相等的正三角形、正四邊形、正六邊形的面積S3、S4、S6間的大小關(guān)系是( )
A. S3>S4>S6 B. S6>S4>S3 C. S6>S3>S4 D. S4>S6>S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,,,…,的n個(gè)正方形依次放入△ABC中,則第n個(gè)正方形的邊長_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù)
旋轉(zhuǎn)對稱
把正n邊形繞著它的中心旋轉(zhuǎn)的整數(shù)倍后所得的正n邊形重合.我們說,正n邊形關(guān)于其中心有的旋轉(zhuǎn)對稱.一般地,如果一個(gè)圖形繞著某點(diǎn)O旋轉(zhuǎn)角α(0<α<360°)后所得到的圖形與原圖形重合,則稱此圖形關(guān)于點(diǎn)O有角α的旋轉(zhuǎn)對稱.圖1就是具有旋轉(zhuǎn)對稱性質(zhì)的一些圖形.
任務(wù):
(1)如圖2,正六邊形關(guān)于其中心O有 的旋轉(zhuǎn)對稱,中心對稱圖形關(guān)于其對稱中心有 的旋轉(zhuǎn)對稱;
(2)圖3是利用旋轉(zhuǎn)變換設(shè)計(jì)的具有旋轉(zhuǎn)對稱性的一個(gè)圖形,將該圖形繞其中心至少旋轉(zhuǎn) 與原圖形重合;
(3)請以圖4為基本圖案,在圖5中利用平移、軸對稱或旋轉(zhuǎn)進(jìn)行圖案設(shè)計(jì),使得設(shè)計(jì)出的圖案是中心對稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC、OC相較于點(diǎn)E、F,則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=x2與直線相交于A、B兩點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)點(diǎn)O為坐標(biāo)原點(diǎn),△AOB的面積等于___________
(3)當(dāng)y1<y2時(shí),x的取值范圍是________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、O是單位為1的正方形網(wǎng)格上的三個(gè)格點(diǎn),⊙O的半徑為OA,點(diǎn)P是優(yōu)弧的中點(diǎn),則P到AB的距離為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在反比例函數(shù)第一象限的圖象上,連接,延長與雙曲線的另一支交于點(diǎn),作的垂直平分線,交于點(diǎn),交軸于點(diǎn),交軸于點(diǎn).
(1)在圖中,當(dāng),直接寫出,,三點(diǎn)的坐標(biāo),并求出直線的解析式.
(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),利用圖,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中裝有4張卡片.4張卡片的正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外都相同,將卡片攪勻.
(1)從盒子任意抽取一張卡片,恰好抽到標(biāo)有奇數(shù)卡片的概率是: ;
(2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標(biāo)有數(shù)字之和大于4的概率(請用畫樹狀圖或列表等方法求解).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com