分析 (1)根據(jù)題意,在△ABM中,∠BAM=30°,∠ABM=45°,BM=300($\sqrt{3}$+l)米.通過解直角Rt△MBD求得MD的長度;
(2)通過解直角Rt△ADM求得AM的長度.
解答 解:由題意可知∠MBD=45°,∠MAD=30°.
(1)在Rt△MBD中,DM=BM•sin∠DBM=300×sin45°=150$\sqrt{2}$(米);
(2)在Rt△ADM中,AM=$\frac{DM}{sin∠DAM}$=$\frac{150\sqrt{2}}{sin30°}$=300$\sqrt{2}$(米).
點(diǎn)評(píng) 本題考查了解直角三角形的應(yīng)用--方向角問題.解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 8$\sqrt{6}$+24 | B. | 8$\sqrt{6}$+8 | C. | 24+8$\sqrt{3}$ | D. | 8+8$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com