【題目】如圖,已知ABC為等邊三角形,點D由點C出發(fā),在BC的延長線上運動,連結AD,以AD為邊作等邊三角形ADE,連結CE

(1)請寫出AC、CD、CE之間的數(shù)量關系,并證明;

(2)若AB=6cm,點D的運動速度為每秒2cm,運動時間為t秒,則t為何值時,CEAD?

【答案】(1)AC+CD=CE,證明詳見解析;(2)t=3.

【解析】

(1)證明ACE≌△ABD,得到BD=CE,即可解決問題.
(2)證明CEADE的邊AD的垂直平分線,得到CD=CA=AB=6,即可解決問題.

解:(1AC+CD=CE

證明:如圖,∵△ABCADE為等邊三角形,

AC=AB=BC,AE=AD,∠BAC=DAE=60°

∴∠BAD=CAE;

ACEABD中,

∴△ACE≌△ABD SAS),

BD=CE,

AC+CD=BC+CD=BD

AC+CD=CE

2)∵△ADE為等邊三角形,CEAD,

CEADE的邊AD的垂直平分線,

CD=CA=AB=6,

t=3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是弧AB上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結DE,點F在線段DE上,且EF=2DF,過點C的直線CG交OA的延長線于點G,且∠CGO=∠CDE.
(1)求證:CG與弧AB所在圓相切.
(2)當點C在弧AB上運動時,△CFD的三條邊是否存在長度不變的線段?若存在,求出該線段的長度;若不存在,說明理由.
(3)若∠CGD=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)如圖,正方形網(wǎng)格中的每個小正方形邊長都是1

(利用網(wǎng)格線進行畫圖,別忘了標上字母噢。

1) 在圖1中,畫一個頂點為格點、面積為5的正方形;

2) 在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;

(要求畫出所有符合題意的線段)

3) 在圖3中,找一格點D,滿足:CB、CA的距離相等;到點A、C的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0),B(4,0)兩點,與y軸交于點C,且OC=3OA,點P是拋物線上的一個動點,過點P作PE⊥x軸于點E,交直線BC于點D,連接PC.

(1)試求拋物線的解析式;
(2)如圖2,當動點P只在第一象限的拋物線上運動時,過點P作PF⊥BC于點F,試問△PFD的周長是否有最大值?如果有,請求出最大值;如果沒有,請說明理由.
(3)當點P在拋物線上運動時,將△CPD沿直線CP翻折,點D的對應點為點Q,試問,四 邊形CDPQ能否成為菱形?如果能,請求此時點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上一點,OD平分∠BOC,COE=90°.

(1)若∠AOC=48°,求∠DOE的度數(shù).

(2)若∠AOC=α,則∠DOE=   (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知直線 )分別交反比例函數(shù) 在第一象限的圖象于點 , ,過點 軸于點 ,交 的圖象于點 ,連結 .若 是等腰三角形,則 的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 的直角邊 上一點,以 為半徑的 與斜邊 相切于點 ,交 于點 .已知

(1)求 的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4cm,面積是12cm2,腰AB的垂直平分線EFAC于點F,若DBC邊上的中點,M為線段EF上一動點,則BDM的周長最短為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DE∥BC, AB∥CDEAB的中點,∠A=∠B.下列結論:①CD=AE②AC=DE③AC平分∠BCD④O點是DE的中點;⑤AC=AB.其中正確的是(  )

A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤

查看答案和解析>>

同步練習冊答案