【題目】如圖,活動(dòng)課上,小玥想要利用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量某個(gè)建筑地所在山坡AE的高度,她先在山腳下的點(diǎn)E處測(cè)得山頂A的仰角是30°,然后,她沿著坡度i=1:1的斜坡按速度20/分步行15分鐘到達(dá)C處,此時(shí),測(cè)得點(diǎn)A的俯角是15°.圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上,求出建筑地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù):≈1.41).

【答案】建筑地所在山坡AE的高度AB約為105.8米.

【解析】

EF⊥AC于點(diǎn)F,RT△CDE中根據(jù)i=1:1知∠CED=∠DCE=45°,RT△CEF中知∠ECF=30°、CE=300米,進(jìn)而可得EF=150米,由∠CEF=60°、∠AEB=30°知∠AEF=45°,在RT△AEF中根據(jù)勾股定理可得AB的長(zhǎng)度.

解:作EFAC于點(diǎn)F,

根據(jù)題意,CE=20×15=300米,

i=1:1,

tanCED=1,

∴∠CED=DCE=45°,

∵∠ECF=90°﹣45°﹣15°=30°,

EF=CE=150米,

∵∠CEF=60°,AEB=30°,

∴∠AEF=180°﹣45°﹣60°﹣30°=45°,

AF=EF=150米,

AE= (米),

AB=×150≈105.8(米).

答:建筑地所在山坡AE的高度AB約為105.8米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,等腰RtOAB中,∠AOB=90°,等腰RtEOF中,∠EOF=90°,連結(jié)AE、BF

求證:(1AE=BF;(2AEBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,1=2,DB=DC.

(1)求證:ABD≌△EDC;

(2)若∠A=135°,BDC=30°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°點(diǎn)EAC上(且不與點(diǎn)A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證AF=AE

3如圖3,CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形CEDABC的下方時(shí),AB=2CE=2,求線段AE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)DBC上一動(dòng)點(diǎn),連接AD,將ACD沿AD折疊,點(diǎn)C落在點(diǎn)C'處,連接C'DAB于點(diǎn)E,連接BC',當(dāng)BC'D是直角三角形時(shí),DE的長(zhǎng)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

我區(qū)在一項(xiàng)工程招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書,從投標(biāo)書中得知:每施工一天,甲工程隊(duì)要萬(wàn)元,乙工程隊(duì)要萬(wàn)元,工程小組根據(jù)甲、乙兩隊(duì)標(biāo)書的測(cè)算,有三種方案:甲隊(duì)單獨(dú)完成這個(gè)工程,剛好如期完成;乙隊(duì)單獨(dú)完成這個(gè)工程要比規(guī)定時(shí)間多用5天;**********,剩下的工程由乙隊(duì)單獨(dú)做,也正好如期完成. 方案星號(hào)部分被損毀了. 已知,一個(gè)同學(xué)設(shè)規(guī)定的工期為天,根據(jù)題意列出方程:

1)請(qǐng)將方案中星號(hào)部分補(bǔ)充出來(lái)________________;

2)你認(rèn)為哪個(gè)方案節(jié)省工程款,請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺(tái)進(jìn)價(jià)分別為 2000 元,1700 元的A,B兩種型號(hào)的凈水器,下表是近兩周的銷售情況:

1)求AB兩種型號(hào)的凈水器的銷售單價(jià);

2)若電器公司準(zhǔn)備用不多于 54000 元的金額采購(gòu)這兩種型號(hào)的凈水器共 30 臺(tái),求 A種型號(hào)的凈水器最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下,公司銷售完這 30 臺(tái)凈水器能否實(shí)現(xiàn)利潤(rùn)超過(guò)12800 元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BOC=60°,點(diǎn)ABO延長(zhǎng)線上的一點(diǎn),OA=10cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案