【題目】如圖,在中,,點(diǎn)在線段上,以為直徑的相交于點(diǎn),與相交于點(diǎn),

1)求證:的切線;

2)在(1)的條件下,判斷以為頂點(diǎn)的四邊形為哪種特殊四邊形,并說明理由.

【答案】1)見解析;(2)以為頂點(diǎn)的四邊形是菱形.理由見解析.

【解析】

1)利用等腰三角形的性質(zhì)和三角形外角的性質(zhì)得出∠BOE=60°,進(jìn)而得出∠BEO=90°,即可得出結(jié)論;
2)先判斷出AOF是等邊三角形,得出OA=AF,∠AOF=60°,進(jìn)而判斷出OEF是等邊三角形,即可判斷出四邊相等,即可得出結(jié)論.

1)連接

中,,

∵點(diǎn)上,

的切線.

2)以為頂點(diǎn)的四邊形是菱形.

理由如下:在中,

如圖,連接,則

是等邊三角形.

,

連接,則

是等邊三角形.

∴四邊形是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,是等邊三角形,點(diǎn),分別在邊上.若,則,之間的數(shù)量關(guān)系是 ;

2)拓展探究

如圖2是等腰三角形,,點(diǎn),分別在邊,上.若,則(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由.

3)解決問題

如圖3,在中,,,點(diǎn)從點(diǎn)出發(fā),以img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/16/9b7a314d/SYS202005251646204964745826_ST/SYS202005251646204964745826_ST.021.png" width="47" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />的速度沿方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以的速度沿方向勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).連接,在右側(cè)作,該角的另一邊交射線于點(diǎn),連接.設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)為等腰三角形時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果顯示支付方式有:微信、支付寶、現(xiàn)金、其他.該小組對(duì)某超市一天內(nèi)購(gòu)買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次一共調(diào)查了 名購(gòu)買者?

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,種支付方式所對(duì)應(yīng)的圓心角為 度;

3)若該超市這一周內(nèi)有2000名購(gòu)買者,請(qǐng)你估計(jì)使用兩種支付方式的購(gòu)買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的學(xué)生參與到志愿服務(wù)中來,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過初選,兩所學(xué)校各有400名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié).為了了解兩所學(xué)校這些學(xué)生的整體情況,從兩校進(jìn)人綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析.下面給出了部分信息.

a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,);

b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>這一組的是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

83.3

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學(xué)校學(xué)生A,乙學(xué)校學(xué)生B的綜合素質(zhì)展示成績(jī)同為83分,這兩人在本校學(xué)生中的綜合素質(zhì)展示排名更靠前的是______(填“A”“B”);

2)根據(jù)上述信息,推斷_____學(xué)校綜合素質(zhì)展示的水平更高,理由為_____(至少?gòu)膬蓚(gè)不同的角度說明推斷的合理性);

3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到____分的學(xué)生才可以入選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ADBC,∠C=90°,CD=6cm.動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以1cm/S的速度沿BC運(yùn)動(dòng)到點(diǎn)C停止,同時(shí),動(dòng)點(diǎn)P也從B點(diǎn)出發(fā),沿折線B→A→D運(yùn)動(dòng)到點(diǎn)D停止,且PQBC.設(shè)運(yùn)動(dòng)時(shí)間為ts),點(diǎn)P運(yùn)動(dòng)的路程為ycm),在直角坐標(biāo)系中畫出y關(guān)于t的函數(shù)圖象為折線段OEEF(如圖②).已知點(diǎn)M(4,5)在線段OE上,則圖①中AB的長(zhǎng)是________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到,則圖中陰影部分的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點(diǎn)為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點(diǎn)為(﹣10),(30

C. 當(dāng)x1時(shí),y有最大值為0

D. 拋物線的對(duì)稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弧AE=BD,BEDCDC的延長(zhǎng)線于點(diǎn)E.

(1)求證:∠1=BCE;

(2)求證:BE是⊙O的切線;

(3)若EC=1,CD=3,求cosDBA.

查看答案和解析>>

同步練習(xí)冊(cè)答案