【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線(xiàn)上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E,F(xiàn),則線(xiàn)段B′F的長(zhǎng)為( )

A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)折疊的性質(zhì)可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,

∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,

∵∠ACB=90°,

∴∠ECF=45°,

∴△ECF是等腰直角三角形,

∴EF=CE,∠EFC=45°,

∴∠BFC=∠B′FC=135°,

∴∠B′FD=90°,

∵SABC= ACBC= ABCE,

∴ACBC=ABCE,

∵根據(jù)勾股定理求得AB=5,

∴CE= ,

∴EF= ,ED=AE= =

∴DF=EF﹣ED= ,

∴B′F= =

所以答案是:B.

【考點(diǎn)精析】掌握翻折變換(折疊問(wèn)題)是解答本題的根本,需要知道折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BECE分別為ABC的內(nèi)角平分線(xiàn)和外角平分線(xiàn),BEAC于點(diǎn)HCF平分∠ACBBE于點(diǎn)F連接AE.則下列結(jié)論:①∠ECF=90°;②AE=CE;③;④∠BAC=2BEC;⑤∠AEH=BCF,正確的個(gè)數(shù)為(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=45°,BC=2,D是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)D是關(guān)于直線(xiàn)AB、AC的對(duì)稱(chēng)點(diǎn)分別為M、N,則線(xiàn)段MN長(zhǎng)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=x+1x軸,y軸分別交于B,A兩點(diǎn),動(dòng)點(diǎn)P在線(xiàn)段AB上移動(dòng),以P為頂點(diǎn)作OPQ=45°x軸于點(diǎn)Q

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)比較AOPBPQ的大小,說(shuō)明理由.

3)是否存在點(diǎn)P,使得OPQ是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:點(diǎn)不在同一條直線(xiàn),

1)求證:

2)如圖②,分別為的平分線(xiàn)所在直線(xiàn),試探究的數(shù)量關(guān)系;

3)如圖③,在(2)的前提下,且有,直線(xiàn)交于點(diǎn),,請(qǐng)直接寫(xiě)出______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,ABCD,MBC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.

求證:(1)AMDM;

(2)MBC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)CDAB同側(cè),∠CAB=DBA,下列條件中不能判定ABD≌△BAC的是( 。

A. D=C B. BD=AC C. CAD=DBC D. AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°BE、DF分別平分∠ABC、∠ADC,判斷BE、DF是否平行,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八(1)班同學(xué)為了解2018年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,請(qǐng)解答以下問(wèn)題:

1)本次調(diào)查采用的調(diào)查方式是________(填“普查”或“抽樣調(diào)查”),樣本容量是________;

2)補(bǔ)全頻數(shù)分布直方圖:

3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計(jì)圖,則月均用水量“”的圓心角度數(shù)是________

4)若該小區(qū)有5000戶(hù)家庭,求該小區(qū)月均用水量超過(guò)的家庭大約有多少戶(hù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案