【題目】如圖1,四邊形的對角線,相交于點,,.
圖1 圖2
(1)過點作交于點,求證:;
(2)如圖2,將沿翻折得到.
①求證:;
②若,求證:.
【答案】(1)見解析;(2)①見解析;②見解析.
【解析】
(1)連接CE,根據(jù)全等證得AE=CD,進(jìn)而AECD為平行四邊形,由進(jìn)行等邊代換,即可得到;
(2)①過A作AE∥CD交BD于E,交BC于F,連接CE,,得,利用翻折的性質(zhì)得到,即可證明;②證△BEF≌△CDE,從而得,進(jìn)而得∠CED=∠BCD,且,得到△BCD∽△CDE,得,即可證明.
解:(1)連接CE,
∵,
∴,
∵,,,
∴△OAE≌△OCD,
∴AE=CD,
∴四邊形AECD為平行四邊形,
∴AE=CD,OE=OD,
∵,
∴CD=BE,
∴;
(2)①過A作AE∥CD交BD于E,交BC于F,連接CE,
由(1)得,,
∴,
由翻折的性質(zhì)得,
∴,
∴,
∴;
②∵,,
∴四邊形為平行四邊形,
∴,,
∴,
∵,
∴EF=DE,
∵四邊形AECD是平行四邊形,
∴CD=AE=BE,
∵AF∥CD,
∴,
∵EF=DE,CD=BE,,
∴△BEF≌△CDE(SAS),
∴,
∵,
∴∠CED=∠BCD,
又∵∠BDC=∠CDE,
∴△BCD∽△CDE,
∴,即,
∵DE=2OD,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是邊AB的中點,點E為邊AC上的一個動點(與點A、C不重合),過點E作EF∥AB,交邊BC于點F.聯(lián)結(jié)DE、DF,設(shè)CE=x.
(1)當(dāng)x =1時,求△DEF的面積;
(2)如果點D關(guān)于EF的對稱點為D’,點D’ 恰好落在邊AC上時,求x的值;
(3)以點A為圓心,AE長為半徑的圓與以點F為圓心,EF長為半徑的圓相交,另一個交點H恰好落在線段DE上,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租賃公司對某款汽車的租賃方式按時段計費,該公司要求租賃方必須在9天內(nèi)(包括9天)將所租汽車歸還.租賃費用(元)隨時間(天)的變化圖象為折線,如圖所示.
(1)當(dāng)租賃時間不超過3天時,求每日租金.
(2)當(dāng)時,求(元)與(天)的函數(shù)關(guān)系式.
(3)甲、乙兩人租賃該款汽車各一輛,兩人租賃的時間共為9天,甲租的天數(shù)少于3天,乙比甲多支付費用720元.請問乙租這款汽車多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.
(1)求面料和里料的單價;
(2)該款外套9月份投放市場的批發(fā)價為150元/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.
①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)
②進(jìn)入11月份以后,銷售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎(chǔ)上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎(chǔ)上實施價格上。阎獙VIP客戶的降價率和對普通客戶的提價率相等,結(jié)果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了測量大樓的高度,先沿著斜坡走了米到達(dá)坡頂點處,然后在點處測得大樓頂點的仰角為,已知斜坡的坡度為,點到大樓的距離為米,求大樓的高度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩列火車分別從A、B兩城同時勻速駛出,甲車開往B城,乙車開往A城.由于墨跡遮蓋,圖中提供的是兩車距B城的路程S甲(千米)、S乙(千米)與行駛時間t(時)的函數(shù)圖象的一部分.
(1)分別求出S甲、S乙與t的函數(shù)關(guān)系式(不必寫出t的取值范圍);
(2)求A、B兩城之間的距離,及t為何值時兩車相遇;
(3)當(dāng)兩車相距300千米時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種車的剎車距離,經(jīng)試驗發(fā)現(xiàn),甲車的剎車距離s甲是車速v的,乙車的剎車距離s乙等于反應(yīng)距離與制動距離之和,二反應(yīng)距離與車速v成正比,制動距離與車速v2成正比,具體關(guān)系如下表:
車速v(km/h) | 40 | 50 |
剎車距離s乙(m) | 12 | 17.5 |
(1)分別求出s甲、s乙與車速v的函數(shù)關(guān)系式;
(2)若乙車在限速120km/h的高速公路上行駛,乙車的最長剎車距離是多少m?
(3)剎車速度是處理交通事故的一個重要因素,請看下面一個交通事故案例:甲、乙兩車在限速為80km/g的道路上相向而行,等望見對方,同時剎車時已晚,兩車還是相撞了,事后經(jīng)現(xiàn)場勘查,測得甲車的剎車距離超過16m,但小于18m,乙車的剎車距離是24m,請你比較兩車的速度,并判斷哪輛車超速?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學(xué)一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標(biāo)出).
根據(jù)上述信息,解答下列各題:
×
(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;
(2)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關(guān)注指數(shù)”.如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低,試求該班級男生人數(shù);
(3)為進(jìn)一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).
統(tǒng)計量 | 平均數(shù)(次) | 中位數(shù)(次) | 眾數(shù)(次) | 方差 | … |
該班級男生 | … |
根據(jù)你所學(xué)過的統(tǒng)計知識,適當(dāng)計算女生的有關(guān)統(tǒng)計量,進(jìn)而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上的一點,以CD為直徑的⊙O交AC于E,連接BE交CD于P,交⊙O于F,連接DF,∠ABC=∠EFD.
(1)求證:AB與⊙O相切;
(2)若AD=4,BD=6,則⊙O的半徑= ;
(3)若PC=2PF,BF=a,求CP(用a的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com