【題目】如圖,ABCD中,AB=4,BC=5,∠ABC=60°,對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)O作OE⊥AD,則OE等于(
A.
B.2
C.2
D.2.5

【答案】A
【解析】解:作CF⊥AD于F,如圖所示:
∵四邊形ABCD是平行四邊形,
∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,
∴∠DCF=30°,
∴DF= CD=2,
∴CF= DF=2 ,
∵CF⊥AD,OE⊥AD,CF∥OE,
∵OA=OC,
∴OE是△ACF的中位線,
∴OE= CF=
故選:A.
作CF⊥AD于F,由平行四邊形的性質(zhì)得出∠ADC=∠ABC=60°,CD=AB=4,OA=OC,求出∠DCF=30°,由直角三角形的性質(zhì)得出DF= CD=2,求出CF= DF=2 ,證出OE是△ACF的中位線,由三角形中位線定理得出OE的長即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:y2=﹣x2+mx+n為“友好拋物線”.

(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為:可回垃圾、廚余垃圾、其他垃圾三類,分別記為A,B,C:并且設(shè)置了相應(yīng)的垃圾箱,依次記為a,b,c.
(1)若將三類垃圾隨機(jī)投入三個(gè)垃圾箱,請(qǐng)你用樹形圖的方法求垃圾投放正確的概率:
(2)為了調(diào)查小區(qū)垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該小區(qū)三類垃圾箱中總重500kg生活垃圾,數(shù)據(jù)如下(單位:)

a

b

c

A

40

15

10

B

60

250

40

C

15

15

55

試估計(jì)“廚余垃圾”投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,需在一面墻上繪制兩個(gè)形狀相同的拋物絨型圖案,按照?qǐng)D中的直角坐標(biāo)系,最高點(diǎn)M到橫軸的距離是4米,到縱軸的距離是6米;縱軸上的點(diǎn)A到橫軸的距離是1米,右側(cè)拋物線的最大高度是左側(cè)拋物線最大高度的一半.(結(jié)果保留整數(shù)或分?jǐn)?shù),參考數(shù)據(jù): = , =
(1)求左側(cè)拋物線的表達(dá)式;
(2)求右側(cè)拋物線的表達(dá)式;
(3)求這個(gè)圖案在水平方向上的最大跨度是多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列美麗的圖案,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為班級(jí)聯(lián)歡會(huì)設(shè)計(jì)了一個(gè)摸球游戲.游戲規(guī)則如下:在一個(gè)不透明的紙箱里裝有紅、黃、藍(lán)三種顏色的小球,它們除顏色外完全相同,其中紅球有2個(gè),黃球有1個(gè),藍(lán)球有1個(gè).游戲者先從紙箱里隨機(jī)摸出一個(gè)球,記錄顏色后放回,將小球搖勻,再隨機(jī)摸出一個(gè)球,若兩次摸到的球顏色相同,則游戲者可獲得一份紀(jì)念品.請(qǐng)你利用樹狀圖或列表法求游戲者獲得紀(jì)念品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南山植物園中現(xiàn)有A、B兩個(gè)園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.

(1)請(qǐng)用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;

(2)現(xiàn)根據(jù)實(shí)際需要對(duì)A園區(qū)進(jìn)行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.

①求x、y的值;

②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費(fèi)用與吸引游客的收益如表:

求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開展“感動(dòng)中國2016年度人物”先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A,B,C,D四類,其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06


(1)表中的a= , b=;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為D的人數(shù)約為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案