ABCD的周長(zhǎng)是40cm,△ABC的周長(zhǎng)是30cm,則對(duì)角線AC的長(zhǎng)是______cm
10
由?ABCD的周長(zhǎng)為40cm,可得AB+BC=30cm,又有△ABC的周長(zhǎng)為30cm,即可求對(duì)角線AC長(zhǎng).
解:∵?ABCD的周長(zhǎng)為40 cm,

∴AB+BC=20cm,
又∵△ABC的周長(zhǎng)為30cm,
∴對(duì)角線AC長(zhǎng)為30-20=10cm.
故答案為:10.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

□ABCD中,點(diǎn)E在邊AD上,以BE為折痕將△ABE向上翻折,點(diǎn)A正好落在CD的點(diǎn)F處,若△FDE的周長(zhǎng)為8,△FCB的周長(zhǎng)為22,則YABCD的周長(zhǎng)為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有長(zhǎng)方形ABCD紙片,將△BCD沿對(duì)角線折疊,記點(diǎn)C的對(duì)應(yīng)點(diǎn)為.若∠AD=20°,則∠BDC      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD下底與上底的差恰好等于腰長(zhǎng),DE∥AB,則DEC等于______
                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,正方形ABCD的邊長(zhǎng)為6,將其繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到正方形AEFG,F(xiàn)G與BC相交于點(diǎn)H.

(1)求證:BH=GH;
(2)求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知矩形ABCD,現(xiàn)將矩形沿對(duì)角線BD折疊,得到如圖所示的圖形,

(1)求證:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)如圖,梯形ABCD中,AD∥BC,BC=2AD,F(xiàn)、G分別為邊BC、CD的中點(diǎn),連接AF,F(xiàn)G,過D作DE∥GF交AF于點(diǎn)E。
(1)證明△AED≌△CGF
(2)若梯形ABCD為直角梯形,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論。
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題



動(dòng)手操作:在矩形紙片中,.如圖所示,折疊紙片,使點(diǎn) 落在邊上的處,折痕為.當(dāng)點(diǎn)邊上移動(dòng)時(shí),折痕的端點(diǎn)也隨之移動(dòng).若限定點(diǎn)分別在邊上移動(dòng),則點(diǎn)邊上距B點(diǎn)可移動(dòng)的最短距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小區(qū)的一角有一塊形狀為等腰梯形的空地,為了美化小區(qū),社區(qū)居委會(huì)計(jì)
劃在空地上建一個(gè)四邊形的水池,水池的四個(gè)頂點(diǎn) 恰好是梯形各邊的中點(diǎn),則水池的形狀
一定是【    】
A.等腰梯形B.矩形C.菱形D.正方形

查看答案和解析>>

同步練習(xí)冊(cè)答案