【題目】已知斜邊上的高,以為直徑的圓交點(diǎn),交點(diǎn),的中點(diǎn).

1)求證:的切線;

2)若,求的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

1)連DE、OE,利用圓周角定理可得∠CED=BED=90°,因?yàn)?/span>GBD的中點(diǎn),由直角三角形的性質(zhì)可得GE=GD,再由OE=OD,易得∠OED=ODE,可得∠GEO=GDO,CDAB,可得∠GEO=GDO=90°,可得結(jié)論;
(2)首先由垂直的定義易得∠B=ACD,利用銳角三角函數(shù)可得tanB=可知CD=GD=DE=BD,根據(jù)tanB=tanACD,列比例式即可求得答案.

解:(1)證明:連,

的直徑,

,

的中點(diǎn),

,

,

,

,

的切線;

2)∵,

,

,

,

,

,

EG= DG= BG= CD=BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)的圖象交于Am,6),B3n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫(xiě)出x的取值范圍;

3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)有一個(gè)△ABC,O為平面內(nèi)的一點(diǎn),延長(zhǎng)AOA,使OA′=OA,延長(zhǎng)BOB,使OB′=OB,延長(zhǎng)CO到從C,使OC′=OC,得到△ABC,問(wèn):△ABC與△ABC是否全等?這兩個(gè)三角形的對(duì)應(yīng)邊是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E為邊CD的中點(diǎn),若菱形ABCD的周長(zhǎng)為16,BAD=60°,OCE的面積是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在RtABC中,∠BAC90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對(duì)折,使點(diǎn)B落在點(diǎn)B′處,連結(jié)AB',BB',延長(zhǎng)CDBB'于點(diǎn)E,設(shè)∠ABC2α(0°<α<45°).

1)如圖1,若ABAC,求證:CD2BE;

2)如圖2,若ABAC,試求CDBE的數(shù)量關(guān)系(用含α的式子表示);

3)如圖3,將(2)中的線段BC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EFBC于點(diǎn)O,設(shè)COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角ABC中,ABAC,邊BC長(zhǎng)為6,高AD長(zhǎng)為4,正方形PQMN的兩個(gè)頂點(diǎn)在ABC一邊上,另兩個(gè)頂點(diǎn)分別在ABC的另兩邊上,則正方形PQMN的邊長(zhǎng)為(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EF分別是邊AD、AB上的點(diǎn),連結(jié)OE、OFEF.若AB=7,BC=5,∠DAB=45°,則①點(diǎn)C到直線AB的距離是_____.②△OEF周長(zhǎng)的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年5月的第二個(gè)星期日即為母親節(jié),父母恩深重,恩憐無(wú)歇時(shí),許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購(gòu)了一批康乃馨,經(jīng)分析上一年的銷(xiāo)售情況,發(fā)現(xiàn)這種康乃馨每天的銷(xiāo)售量y(支)是銷(xiāo)售單價(jià)x(元)的一次函數(shù),已知銷(xiāo)售單價(jià)為7/支時(shí),銷(xiāo)售量為16支;銷(xiāo)售單價(jià)為8/支時(shí),銷(xiāo)售量為14支.

1)求這種康乃馨每天的銷(xiāo)售量y(支)關(guān)于銷(xiāo)售單價(jià)x(元/支)的一次函數(shù)解析式;

2)若按去年方式銷(xiāo)售,已知今年這種康乃馨的進(jìn)價(jià)是每支5元,商家若想每天獲得42元的利潤(rùn),銷(xiāo)售單價(jià)要定為多少元?

3)在(2)的條件下,當(dāng)銷(xiāo)售單價(jià)x為何值時(shí),花店銷(xiāo)售這種康乃馨每天獲得的利潤(rùn)最大?并求出獲得的最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案