【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.

(1)求證:四邊形ADEF為平行四邊形;

(2)當(dāng)點D為AB中點時,判斷ADEF的形狀;

(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.

【答案】(1)證明見解析;(2)ADEF的形狀為菱形,理由見解析;(3)四邊形AEGF是矩形,理由見解析.

【解析】

(1)根據(jù)平行線的性質(zhì)得到∠BDE=A,根據(jù)題意得到∠DEF=BDE,根據(jù)平行線的判定定理得到ADEF,根據(jù)平行四邊形的判定定理證明;

(2)根據(jù)三角形中位線定理得到DE=AC,得到AD=DE,根據(jù)菱形的判定定理證明;

(3)根據(jù)等腰三角形的性質(zhì)得到AEEG,根據(jù)有一個角是直角的平行四邊形是矩形證明.

(1)證明:∵DEAC,

∴∠BDE=A,

∵∠DEF=A,

∴∠DEF=BDE,

ADEF,又∵DEAC,

∴四邊形ADEF為平行四邊形;

(2)解:ADEF的形狀為菱形,

理由如下:∵點DAB中點,

AD=AB,

DEAC,點DAB中點,

DE=AC,

AB=AC,

AD=DE,

∴平行四邊形ADEF為菱形,

(3)四邊形AEGF是矩形,

理由如下:由(1)得,四邊形ADEF為平行四邊形,

AFDE,AF=DE,

EG=DE,

AFDE,AF=GE,

∴四邊形AEGF是平行四邊形,

AD=AG,EG=DE,

AEEG,

∴四邊形AEGF是矩形.

故答案為:(1)證明見解析;(2)菱形(3)矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,都被分成了3等份,并在每份內(nèi)均標(biāo)有數(shù)字,如圖所示.規(guī)則如下:

分別轉(zhuǎn)動轉(zhuǎn)盤;

兩個轉(zhuǎn)盤停止后,將兩個指針?biāo)阜輧?nèi)的數(shù)字相乘(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).

1】用列表法或樹狀圖分別求出數(shù)字之積為3的倍數(shù)和數(shù)字之積為5的倍數(shù)的概率;

2】小明和小亮想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小明得2分;數(shù)字之積為5的倍數(shù)時,小亮得3分.這個游戲?qū)﹄p方公平嗎?請說明理由;認(rèn)為不公平的,試修改得分規(guī)定,使游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速,如圖,觀測點設(shè)在到永豐路的距離為100米的點P.這時,一輛小轎車由西向東勻速行駛,測得此車從A處行駛到B處所用的時間為4秒,,.

1)求A、B之間的路程;

2)請判斷此車是否超過了永豐路每小時54千米的限制速度?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列的解題過程,然后回答下列問題.

例:解絕對值方程:.

解:討論:①當(dāng)時,原方程可化為,它的解是;

②當(dāng)時,原方程可化為,它的解是.

原方程的解為.

1)依例題的解法,方程算的解是_______;

2)嘗試解絕對值方程:;

3)在理解絕對值方程解法的基礎(chǔ)上,解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國夢是中華民族每個人的夢,也是每一個中小學(xué)生的夢,各中小學(xué)開展經(jīng)典誦讀活動,無疑是中國夢教育這一宏大樂章里的響亮音符,學(xué)校在經(jīng)典誦讀活動中,對全校學(xué)生用、、四個等級進(jìn)行評價,現(xiàn)從中抽取若干個學(xué)生進(jìn)行調(diào)查,繪制出了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題.

1)共抽取了多少個學(xué)生進(jìn)行調(diào)查?

2)求、、等級的百分比.

3)求出圖乙中等級所占圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,∠B60°,點E在邊BC上,點F在邊CD上.

(1)如圖①,若點EBC的中點,∠AEF60°,求證:BEDF;

(2)如圖②,若∠EAF60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)國家發(fā)改委實施“階梯電價”的有關(guān)文件要求,某縣結(jié)合地方實際,決定對居民生活用電實行“階梯電價”收費,具體收費標(biāo)準(zhǔn)見下表

一戶居民一個月用電量的范圍

電費價格(單位:元/千瓦時)

不超過150千瓦時的部分

a

超過150千瓦時,但不超過230千瓦時的部分

b

超過230千瓦時的部分

a+0.33

201910月份,該縣居民甲用電100千瓦時,交費64元;居民乙用電200千瓦時,交費134.5元.

1)根據(jù)題意,求出上表中ab的值;

2)實行“階梯電價”收費以后,該縣居民當(dāng)月用電多少千瓦時時,其當(dāng)月的平均電價為0.67元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠BOE=90°,OM平分∠AODON平分∠DOE.

1)若∠MOE=27°,求∠AOC的度數(shù);

2)當(dāng)∠BOD=x°(0<x<90)時,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BCAB的夾角分別為45°68°,若點C到地面的距離CD28cm,坐墊中軸E處與點B的距離BE4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

同步練習(xí)冊答案