【題目】菱形ABCD中,∠B60°,點E在邊BC上,點F在邊CD上.

(1)如圖①,若點EBC的中點,∠AEF60°,求證:BEDF;

(2)如圖②,若∠EAF60°,求證:△AEF是等邊三角形.

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)首先連接AC,由菱形ABCD中,∠B=60°,根據(jù)菱形的性質,易得△ABC是等邊三角形,又由三線合一,可證得AE⊥BC,繼而求得∠FEC=∠CFE,即可得EC=CF,繼而證得BE=DF

2)首先由△ABC是等邊三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行線與三角形外角的性質,可求得∠AEB=∠AFC,證得△AEB≌△AFC,即可得AE=AF,證得:△AEF是等邊三角形.

試題解析:(1)連接AC,

在菱形ABCD中,∠B=60°

∴AB=BC=CD,∠C=180°-∠B=120°,

∴△ABC是等邊三角形,

∵EBC的中點,

∴AE⊥BC,

∵∠AEF=60°,

∴∠FEC=90°-∠AEF=30°,

∴∠CFE=180°-∠FEC-∠ECF=180°-30°-120°=30°

∴∠FEC=∠CFE,

∴EC=CF

∴BE=DF;

2∵△ABC是等邊三角形,

∴AB=AC,∠ACB=60°,

∴∠B=∠ACF=60°,

∵AD∥BC

∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,

∠AFC=∠D+∠FAD=60°+∠FAD,

∴∠AEB=∠AFC,

△ABE△ACF中,

∴△ABE≌△ACFAAS),

∴AE=AF,

∵∠EAF=60°,

∴△AEF是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張邊長為6的正方形紙片ABCDPAD邊上一點(不與點A、D重合),將正方形紙片沿EF折疊,使點B落在點P處,點C落在點G處,PGDCH,連接BP

1)求證:∠APB=∠BPH;

2)若PAD中點,求四邊形EFGP的面積;

3)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?寫出你的結論并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形為正方形,點為線段上一點,連接,過點,交射線于點,以、為鄰邊作矩形,連接.

1)如圖,求證:矩形是正方形;

2)當線段與正方形的某條邊的夾角是時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關系用圖象表示大致是下圖中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.

(1)求證:四邊形ADEF為平行四邊形;

(2)當點D為AB中點時,判斷ADEF的形狀;

(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級(1)班要從班級里數(shù)學成績較優(yōu)秀的甲、乙兩位學生中選拔一人參加“全國初中數(shù)學聯(lián)賽”,為此,數(shù)學老師對兩位同學進行了輔導,并在輔導期間測驗了6次,測驗成績如下表(單位:分):

次數(shù),1, 2, 3, 4, 5, 6

甲:79,78,84,81,83,75

乙:83,77,80,85,80,75

利用表中數(shù)據(jù),解答下列問題:

(1)計算甲、乙測驗成績的平均數(shù).

(2)寫出甲、乙測驗成績的中位數(shù).

(3)計算甲、乙測驗成績的方差.(結果保留小數(shù)點后兩位)

(4)根據(jù)以上信息,你認為老師應該派甲、乙哪名學生參賽?簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B-1,2)是一次函數(shù)與反比例函數(shù)

)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D

(1)根據(jù)圖象直接回答:在第二象限內,當x取何值時,一次函數(shù)大于反比例函數(shù)的值?

(2)求一次函數(shù)解析式及m的值;

(3)P是線段AB上的一點,連接PCPD,若△PCA△PDB面積相等,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,EABBC上的動點,連接CD,DECD+DE的最小值為(

A. 8 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線上有一點,過作射線,嘉琪將一直角三角板的直角頂點與重合.

(1)嘉琪把三角板如圖1放置,若,則 ;

(2)嘉琪將直角三角板繞點順時針旋轉一定角度后如圖2,使平分,且,求的度數(shù).

查看答案和解析>>

同步練習冊答案