【題目】有一塊矩形地塊,米,米,為美觀,擬種植不同的花卉,如圖所示,將矩形分割成四個等腰梯形及一個矩形,其中梯形的高相等,均為米.現(xiàn)決定在等腰梯形中種植甲種花卉;在等腰梯形中種植乙種花卉;在矩形中種植丙種花卉.甲、乙、丙三種花卉的種植成本分別為20/、60 /40/,設三種花卉的種植總成本為元.


1)當時,求種植總成本;

2)求種植總成本的函數(shù)表達式,并寫出自變量的取值范圍;

3)若甲、乙兩種花卉的種植面積之差不超過120,求三種花卉的最低種植總成本.

【答案】1)當時,;(2;(3)當時,最小為21600

【解析】

1)根據(jù),即可求解;

2)參考(1),由題意得:;

3,則,即可求解.

解:(1)當時,,,

2,參考(1),由題意得:;

3

同理,

甲、乙兩種花卉的種植面積之差不超過120,

,

解得:

,

的增大而減小,故當時,的最小值為21600,

即三種花卉的最低種植總成本為21600元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA2,C的中點,DOA上任意一點(不與點O、A重合),則圖中陰影部分的面積為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸交于AB兩點,交y軸于點C,AB4,對稱軸是直線x=﹣1

1)求拋物線的解析式及點C的坐標;

2)連接AC,E是線段OC上一點,點E關(guān)于直線x=﹣1的對稱點F正好落在AC上,求點F的坐標;

3)動點M從點O出發(fā),以每秒2個單位長度的速度向點A運動,到達點A即停止運動,過點Mx軸的垂線交拋物線于點N,交線段AC于點Q.設運動時間為tt0)秒.

①連接BC,若BOCAMN相似,請直接寫出t的值;

②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是用黑色棋子擺成的美麗圖案,按照這樣的規(guī)律擺下去,第10個這樣的圖案需要黑色棋子的個數(shù)為(

A.148B.152C.174D.202

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊的邊長為3,點在邊上,,線段在邊上運動,,有下列結(jié)論:

可能相等;②可能相似;③四邊形面積的最大值為;④四邊形周長的最小值為.其中,正確結(jié)論的序號為(

A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館普通票價20/暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/每次憑卡不再收費

銀卡售價150/,每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設游泳x次時,所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式;

(2)在同一坐標系中若三種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B、C的坐標;

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,半徑為2軸的正半軸交于點,點上一動點,點為弦的中點,直線軸、軸分別交于點,則面積的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,是銳角,于點,的中點,連接;若,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 在平面直角坐標系中, 坐標為, 軸正半軸上,直線經(jīng)過點、,且,

1)若點的坐標為,求直線的表達式;

2)反比例函數(shù)的圖像與直線交于第一象限的、兩點,當時,求的值(用含的式子表示);

3)在(1)的條件下,設線段的中點為,過點軸的垂線,垂足為,交反比例函數(shù)的圖像于點,分別連接、, 相似時,請直接寫出滿足條件的值.

查看答案和解析>>

同步練習冊答案