【題目】下面是按一定規(guī)律排列且形式相似的一列數(shù):

第1個數(shù):a1-(1+);

第2個數(shù):a2-(1+)[1+][1+];

第3個數(shù):a3-(1+)[1+][1+][1+](1+].

(1)計算這三個數(shù)的結果(直接寫答案):

a1=___;a2=___;a3=___;

(2)請按上述規(guī)律寫出第4個數(shù)a4的形式并計算結果;

(3)請根據(jù)上述規(guī)律寫出第n (n為正整數(shù))個數(shù)an的形式(中間部分用省略號,兩端部分必須寫詳細),然后直接寫出計算結果.

【答案】(1)0、0、0(2)a4=0(3)an=0

【解析】

(1)直接計算這三個數(shù)的結果即可;

(2)仿照已知數(shù)列列式即可;

(3)根據(jù)題意得an=﹣(1+)[1+][1+][1+[1+]…[1+][1+]=0.

解:(1)a1=﹣(1+)=﹣(1﹣)=﹣1+=0,

a2=﹣(1﹣)(1+)(1﹣)=××==0,

a3=﹣(1﹣)(1+)(1﹣)(1+ )(1﹣ )=××× ×==0,

故答案為:0,0,0;

(2) a4=﹣(1+)[1+][1+][1+[1+][1+][1+]

=﹣(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)(1﹣

=××××××

=

=0;

(3) an=﹣(1+)[1+][1+][1+[1+]…[1+ ][1+]=0.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1,如果P,Q表示的數(shù)互為相反數(shù),那么圖中的4個點中,哪一個點表示的數(shù)的平方值最大(  )

A. P B. R C. Q D. T

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,雙曲線y=與直線y=kx﹣2交于點A(3,1).
(1)求直線和雙曲線的解析式;
(2)直線y=kx﹣2與x軸交于點B,點P是雙曲線y=上一點,過點P作直線PC∥x軸,交y軸于點C,交直線y=kx﹣2于點D.若DC=2OB,寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000/2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為1202

若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價8%,另外每套樓房贈送a元裝修基金;

方案二:降價10%,沒有其他贈送.

1)請寫出售價y(元/2)與樓層x1≤x≤23,x取整數(shù))之間的函數(shù)關系式;

2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.

(1)計算AC2+BC2的值等于   

(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個平行四邊形ABEF,使得該平行四邊形的面積等于16;

(3)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個矩形ABMN,使得該矩形的面積等于AC2+BC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,有一組平行線l1∥l2∥l3∥l4,正方形ABCD的四個頂點分別在l1,l2,l3,l4上,EG過點D且垂直l1于點E,分別交l2,l4于點F,G,EF=DG=1,DF=2.

(1)AE=__________,正方形ABCD的邊長=__________;

(2)如圖2,將∠AEG繞點A順時針旋轉得到∠AE′D′,旋轉角為α(0°<α<90°),點D′在直線l3上,以AD′為邊在E′D′左側作菱形AB′C′D′,使B′、C′分別在直線l2,l4上.

①寫出∠B′AD′與α的數(shù)量關系并給出證明;

②若α=30°,直接寫出菱形AB′C′D′的邊長為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O為坐標原點.直線y=kx+b與拋物線y=mx2x+n同時經(jīng)過A(0,3)、B(4,0).
(1)求m,n的值.
(2)點M是二次函數(shù)圖象上一點,(點M在AB下方),過M作MN⊥x軸,與AB交于點N,與x軸交于點Q.求MN的最大值.
(3)在(2)的條件下,是否存在點N,使△AOB和△NOQ相似?若存在,求出N點坐標,不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為深化義務教育課程改革,某校積極開展拓展性課程建設,計劃開設藝術、體育、勞技、文學等多個類別的拓展性課程,要求每一位學生都自主選擇一個類別的拓展性課程.為了了解學生選擇拓展性課程的情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如下統(tǒng)計圖(部分信息未給出):

根據(jù)統(tǒng)計圖中的信息,解答下列問題:

)求本次被調查的學生人數(shù).

)將條形統(tǒng)計圖補充完整.

)若該校共有名學生,請估計全校選擇體育類的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是正ABC內一點,OA=3OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①BO′A可以由BOC繞點B逆時針旋轉60°得到;②點OO′的距離為4;③∠AOB=150°;S四邊形AOBO′=6+3;SAOC+SAOB=6+.其中正確的結論是

A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

同步練習冊答案