【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
【答案】
(1)證明:連接OD,
∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC,
∵DF是⊙O的切線,
∴DF⊥OD,
∴DF⊥AC
(2)解:連接OE,
∵DF⊥AC,∠CDF=22.5°,
∴∠ABC=∠ACB=67.5°,
∴∠BAC=45°,
∵OA=OE,
∴∠AOE=90°,
∵⊙O的半徑為4,
∴S扇形AOE=4π,S△AOE=8 ,
∴S陰影=4π﹣8.
【解析】(1)連接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代換得∠ODB=∠ACB,利用平行線的判定得OD∥AC,由切線的性質(zhì)得DF⊥OD,得出結(jié)論;(2)連接OE,利用(1)的結(jié)論得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面積公式和三角形的面積公式得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是( 。
A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、N、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,小聰同學(xué)擺弄著自己剛購買的一套三角板,將兩塊直角三角板的直角頂點(diǎn)C疊放在一起,然后轉(zhuǎn)動(dòng)三角板,在轉(zhuǎn)動(dòng)過程中,請(qǐng)解決以下問題:
(1)如圖(1):當(dāng)∠DCE=30°時(shí),∠ACB+∠DCE= ,若∠DCE為任意銳角時(shí),你還能求出∠ACB與∠DCE的數(shù)量關(guān)系嗎?若能,請(qǐng)求出;若不能,請(qǐng)說明理由.
(2)當(dāng)轉(zhuǎn)動(dòng)到圖(2)情況時(shí),∠ACB與∠DCE有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車間同時(shí)開始加工一批零件,從開始加工到加工完這批零件,甲車間工作了9小時(shí),乙車間在中途停工一段時(shí)間維修設(shè)備,修好后馬上按停工前的工作效率繼續(xù)加工,直到與甲車間同時(shí)完成這批零件的加工任務(wù)為止,設(shè)甲、乙兩車間各自加工零件的數(shù)量為y(個(gè)),甲車間加工的時(shí)間為x(時(shí)),y與x之間的函數(shù)圖象如圖所示,下列說法其中正確的個(gè)數(shù)為( 。
①這批零件的總個(gè)數(shù)為1260個(gè);
②甲車間每小時(shí)加工零件個(gè)數(shù)為80個(gè);
③乙車間維修設(shè)備后,乙車間加工零件數(shù)量y與x之間的函數(shù)關(guān)系式y=60x﹣120;
④乙車間維修設(shè)備用了2個(gè)小時(shí)
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長度的速度在數(shù)軸上由A向B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).
(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);
(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;
(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);
(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長度時(shí),請(qǐng)求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),點(diǎn)C在第一象限,對(duì)角線BD與x軸平行.直線y=x+3與x軸、y軸分別交于點(diǎn)E、F.將菱形ABCD沿x軸向左平移m個(gè)單位,當(dāng)點(diǎn)D落在△EOF的內(nèi)部時(shí)(不包括三角形的邊),m的取值范圍是( 。
A. 4<m<6 B. 4≤m≤6 C. 4<m<5 D. 4≤m<5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中將下列各點(diǎn)用線段依次連結(jié)起來,能得到什么圖案?
(0,0),(-4,-2),(-3,0),(-5,-1),(-5,1),(-3,0),(-4,2),(0,0).
(1)若以上各點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)分別加3,再將所得的點(diǎn)用線段依次連結(jié)起來,所得的圖案與原來的圖案相比有什么變化?若橫坐標(biāo)不變,縱坐標(biāo)分別加3呢?
(2)連結(jié)點(diǎn)(3,3),(-1,1),(0,3),(-2,2),(-2,4),(0,3),(-1,5),(3,3),觀察所得圖案和原圖案的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com