如圖,已知圓心角∠BOC=78°,則圓周角∠BAC的度數(shù)是
A.1560B.780C.390D.120
C。
觀察圖形可知,已知的圓心角和圓周角所對的弧是一條弧,根據(jù)同弧所對的圓心角等于圓周角的2倍,由圓心角∠BOC的度數(shù)即可求出圓周角∠BAC的度數(shù):∠BAC=∠BOC=×780=390。故選C。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,點P在AB的延長線上,PC切半圓O于點C,連接AC.若∠CPA=20°,則∠A=   °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙O是等腰直角三角形ADE的外接圓,∠ADE=90°,延長ED到C使DC=AD,以AD,DC為鄰邊作正方形ABCD,連接AC,連接BE交AC于點H.求證:

(1)AC是⊙O的切線.
(2)HC=2AH.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如下圖,在邊長為3的正方形ABCD中,圓O1與圓O2外切,且圓O1分別與DA、DC邊相切,圓O2分別與BA、BC邊相切,則圓心距O1O2     .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

若⊙O1和⊙O2的圓心距為4,兩圓半徑分別為r1、r2,且r1、r2是方程組的解,求r1、r2的值,并判斷兩圓的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若⊙O1和⊙O2相切,且兩圓的圓心距為9,則兩圓的半徑不可能是(     )
A.4和5B.10和1C.7和9 D.9和18

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

小敏在作⊙O的內(nèi)接正五邊形時,先做了如下幾個步驟:
(1)作⊙O的兩條互相垂直的直徑,再作OA的垂直平分線交OA于點M,如圖1;
(2)以M為圓心,BM長為半徑作圓弧,交CA于點D,連結(jié)BD,如圖2.若⊙O的半徑為1,則由以上作圖得到的關(guān)于正五邊形邊長BD的等式是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

為二次根式,則m的取值為
A.m≤3B.m<3C.m≥3D.m>3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知點P是半徑為5 的⊙O內(nèi)的一點,且OP=3,則過點P的所有⊙O的弦中,最短的弦長等于(  ).
A.4B.6C.8D.10

查看答案和解析>>

同步練習冊答案