【題目】如圖,正方形中,,點在上運動(不與重臺),過點作,交于點,求運動到多長時,有最大值,并求出最大值.
【答案】當(dāng)BP=6時,CQ最大,且最大值為4.
【解析】
根據(jù)正方形的性質(zhì)和余角的性質(zhì)可得∠BEP=∠CPQ,進(jìn)而可證△BPE∽△CQP,設(shè)CQ=y,BP=x,根據(jù)相似三角形的性質(zhì)可得y與x的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)即可求出結(jié)果.
解:∵四邊形ABCD是正方形,∴∠B=∠C=90°,
∴∠BEP+∠BPE=90°,∵,∴∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.
∴△BPE∽△CQP,∴.
設(shè)CQ=y,BP=x,∵AB=BC=12,∴CP=12﹣x.∵AE=AB,AB=12,∴BE=9,
∴,化簡得:y=﹣(x2﹣12x),即y=﹣(x﹣6)2+4,
所以當(dāng)x=6時,y有最大值為4.即當(dāng)BP=6時,CQ有最大值,且最大值為4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半徑為2,點P是AB邊上的動點,過點P作⊙O的一條切線PC(點C為切點),則線段PC長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科普小組有5名成員,身高(單位:cm)分別為:160,165,170,163,172,把身高160 cm的成員替換成一位165 cm的成員后,現(xiàn)科普小組成員的身高與原來相比,下列說法正確的是( )
A.平均數(shù)變小,方差變小B.平均數(shù)變大,方差變大
C.平均數(shù)變大,方差不變D.平均數(shù)變大,方差變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點D,連結(jié)AD(AD<AB),將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.
(1)請根據(jù)題意補(bǔ)全圖1;
(2)猜測BD和CE的數(shù)量關(guān)系并證明;
(3)作射線BD,CE交于點P,把△ADE繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時,補(bǔ)全圖形,直接寫出PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于A,B兩點,且與反比例函數(shù)y=(x>0)的圖象交于點C,若S△AOB=S△BOC=1,則k=( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,圓是的外接圓.
(1)求圓的半徑;
(2)若在同一平面內(nèi)的圓也經(jīng)過、兩點,且,請直接寫出圓的半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,若AB=4,BC=2,點E為CD的中點,F為AB上一點,連接EF、DF,EF=,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(是常數(shù))經(jīng)過點.
()求該拋物線的解析式和頂點坐標(biāo).
()拋物線與軸另一交點為點,與軸交于點,平行于軸的直線與拋物線交于點, ,與直線交于點.
①求直線的解析式.
②若,結(jié)合函數(shù)的圖像,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點都在格點上,點A,B,C的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),C(0,1)請解答下列問題:
(1)△ABC與△A1B1C1關(guān)于原點O成中心對稱,畫出△A1B1C1并直接寫出點A的對應(yīng)點A1的坐標(biāo);
(2)畫出△ABC繞點C順時針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com