【題目】如圖,擊打臺(tái)球時(shí)小球反彈前后的運(yùn)動(dòng)路線遵循對(duì)稱原理,即小球反彈前后的運(yùn)動(dòng)路線與臺(tái)球案邊緣的夾角相等(α=β),在一次擊打臺(tái)球時(shí),把位于點(diǎn)P處的小球沿所示方向擊出,小球經(jīng)過(guò)5次反彈后正好回到點(diǎn)P,若臺(tái)球案的邊AD的長(zhǎng)度為4,則小球從P點(diǎn)被擊出到回到點(diǎn)P,運(yùn)動(dòng)的總路程為( )
A.16
B.16
C.20
D.20
【答案】B
【解析】解:作GL⊥DC,如圖
,
設(shè)AE=x,ED=(4﹣x),
由勾股定理,得
PE= x,EF= (4﹣x),
同理GH= x,HI= (4﹣x),
PE+EF+GH+HI= (x+4﹣x+x+4﹣x)=8 .
∵α=45°,∠FLG=90°,
∴FG= LG=4 ,
同理PI=4 .
小球從P點(diǎn)被擊出到回到點(diǎn)P,運(yùn)動(dòng)的總路程為
PE+EF+FG+GH+HI+IP=
=(PE+EF+GH+HI)+FG+IP
=8 +4 +4 =16 ,
所以答案是:B.
【考點(diǎn)精析】關(guān)于本題考查的銳角三角函數(shù)的定義,需要了解銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD 中,對(duì)角線 AC 與 BD 相交于點(diǎn) O ,點(diǎn) E , F 分別為 OB , OD 的中點(diǎn),延長(zhǎng) AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知,.
(1)判斷與的位置關(guān)系,并說(shuō)明理由;
(2)若平分,于點(diǎn),,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1,第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2…,第n次平移將矩形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5個(gè)單位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的長(zhǎng).
(2)若ABn的長(zhǎng)為56,求n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,LA,LB分別表示A步行與B騎車(chē)在同一路上行駛的路程y(千米)與時(shí)間x(小時(shí))的關(guān)系.根據(jù)圖象,回答下列問(wèn)題:
(1)B出發(fā)時(shí)與A相距 千米.
(2)B騎車(chē)一段路后,自行車(chē)發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí).
(3)B出發(fā)后 小時(shí)與A相遇.
(4)求出A行走的路程y與時(shí)間x的函數(shù)關(guān)系式.(寫(xiě)出過(guò)程)
(5)若B的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度勻速行駛,A,B肯定會(huì)提前相遇.在圖中畫(huà)出這種假設(shè)情況下B騎車(chē)行駛過(guò)程中路程y與時(shí)間x的函數(shù)圖象,在圖中標(biāo)出這個(gè)相遇點(diǎn)P,并回答相遇點(diǎn)P離B的出發(fā)點(diǎn)O相距多少千米.(寫(xiě)出過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD中,E,F分別是AB、CD上的點(diǎn),AE=CF,M、N分別是DE、BF的中點(diǎn).
(1)求證:四邊形ENFM是平行四邊形.
(2)若∠ABC=2∠A,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是直角三角形,∠ACB=90°,∠A=30°
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫(xiě)作法).
①作△ABC的外接圓O;
②在AB的延長(zhǎng)線上作一點(diǎn)D,使得CD與⊙O相切;
(2)綜合與運(yùn)用:在你所作的圖中,若AC=6,則由線段CD,BD及 所圍成圖形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖把向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到.
(1)在圖中畫(huà)出;
(2)寫(xiě)出點(diǎn)的坐標(biāo):的坐標(biāo)為______,的坐標(biāo)為 _________; 的坐標(biāo)為________.
(3)在軸上是否存在一點(diǎn)P,使得的面積相等?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com