【題目】如圖,于,以直徑作,交于點恰有,連接.
(1)如圖1,求證:;
(2)如圖2,連接分別交,于點連接試探究與之間的數(shù)量關(guān)系,并說明理由;
(3)在(2)的基礎(chǔ)上,若,求的長.
【答案】(1)證明見解析;(2);理由見解析;(3).
【解析】
(1)由直徑所對圓周角等于90度可得,進而易證,再根據(jù)即可證明;
(2)由,可得,進而可知,再由同弧所對圓周角相等可得,再分別證明, ,從而可得,即可解決問題;
(3)設(shè),,由,可得,可得,由,可得,設(shè),,根據(jù),可得,求出即可解決問題.
解:(1)證明: 是直徑,
,
∵,
,
,
,
,
又∵,
(AAS).
(2)結(jié)論:.理由如下:
由(1)可得:,
,
,
是直徑,
∴,
,
,
又∵,
∴,
∴
,
,,
,
,
.
(3)解:設(shè),,
,
,
整理得,
或(舍棄),
,
,
又∵由(2)可知,
,
,
∵,
∴,
∴,
設(shè),,
,
,
,
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點E是BC邊的中點,動點M在CD邊上運動,以EM為折痕將△CEM折疊得到△PEM,連接PA,若AB=4,∠BAD=60°,則PA的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標為t.
①當點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=4,以點B為圓心,BD長為半徑的扇形EBF與AD,CD交于點G,H,且G,H分別為AD,CD邊上的中點,則陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=(k>0,x>0)的圖象與等邊三角形OAB的邊OA,AB分別交于點M,N,且OM=2MA,若AB=3,那么點N的橫坐標為( )
A.B.C.4D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線y=kx(k<0)相交于點A、B,以AB為底作等腰三角形,使∠ACB=120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數(shù)圖象上,則這個圖象所對應(yīng)的函數(shù)解析式為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某風景區(qū)內(nèi)為了方便游客登上山頂,計劃從山底A點到山頂C點修建觀光纜車,此時從A點觀測C點的仰角為45度;施工組經(jīng)過實地勘察后,為了安全,決定將觀光纜車的鋼索改為AD、CD兩段,D點是半山腰上距離地面AB30米的一個支點,從A點觀測D點的仰角為30°.從D點觀測山頂C點的仰角為75°,請你通過自己學過的知識來求出這座山的高度BC約為多少米.(結(jié)果保留整數(shù).可能用到的數(shù)據(jù):≈1.73.sin75°≈0.96.cos75°≈0.26.tan75°≈3.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com