【題目】(1)如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,求∠FEB的度數(shù).

(2)如圖,A地和B地都是海上觀測站,從A地發(fā)現(xiàn)它的北偏東60方向有一艘船P,同時,從B地發(fā)現(xiàn)這艘船P在它北偏東30方向.試在圖中畫出這艘船P的位置.

【答案】(1)120°(2)見解析

【解析】

(1) 根據(jù)將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,可以求得∠FEA∠FEA′、∠BEA′之間的關系,從而可以得到∠FEB的度數(shù).

(2)方位角通常以正北、正南方向為基準線,配以偏東或偏西的角度描述具體的方向,表示兩個方向的射線的交點,就是船的位置.

(1)由折疊可知,∠FEA=FEA′,

EA′平分∠FEB,∴∠FEA′=BEA′

∴∠FEA′=BEA′=FEA .

∵∠FEA′+BEA′+FEA=180 .

3FEA′=180 , FEA′=60 .

∴∠FEB=2FEA′=120.

(2)畫圖.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)1

(2)10x+714x53x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此類推,則a2015的值為( 。

A. ﹣2015 B. ﹣2014 C. ﹣1007 D. ﹣1008

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DM垂直平分AC,交BC于點D,連接AD,若C=28°,AB=BD,則B的度數(shù)為_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x、y的方程組的解為非負數(shù).

1)求a的取值范圍;

2)化簡|2a+4||a1|;

3)在a的取值范圍內(nèi),a為何整數(shù)時,使得2ax+3x2a+3解集為x1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1和∠2互補,∠C=EDF.

(1)判斷DFEC的關系為   

(2)試判斷DEBC的關系,并說明理由.

(3)試判斷∠DEC與∠DFC的關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD中,AB=6cm,BC=4cm,E為CD的中點.點P從A點出發(fā),沿A﹣B﹣C的方向在長方形邊上勻速運動,速度為1cm/s,運動到C點停止.設點P運動的時間為ts.(圖為備用圖)

(1)當P在AB上,t=   s時,APE的面積為長方形面積的;

(2)整個運動過程中,t為何值時,APE為直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,湖中的小島上有一標志性建筑物,其底部為A,某人在岸邊的B處測得A在B的北偏東30°的方向上,然后沿岸邊直行4公里到達C處,再次測得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求這個標志性建筑物底部A到岸邊BC的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,在∠COB的內(nèi)部作射線OE.

1)若∠AOC=36°COE=90°,求∠BOE的度數(shù);

2)若∠COEEOBBOD=432,求∠AOE的度數(shù).

查看答案和解析>>

同步練習冊答案