【題目】如圖,在的正方形方格中,的頂點都在邊長為1的小正方形的頂點上.

1)填空:

2)判斷是否相似,并證明你的結(jié)論.

【答案】1,;(2)相似,理由見解析

【解析】

1)先在RtBCG中根據(jù)等腰直角三角形的性質(zhì)求出∠GBC的度數(shù),再根據(jù)∠ABC=GBC+ABG即可得出∠ABC的度數(shù);在RtBCH中利用勾股定理即可求出BC的長.

2)利用格點三角形的知識求出AB,BCCE,DE的長度,繼而可作出判斷.

解:(1)∵△BCG是等腰直角三角形,

∴∠GBC=45°,

∵∠ABG=90°,

∴∠ABC=GBC+ABG=90°+45°=135°;

∵在RtBHC中,BH=2,CH=2,

;

故答案為:,;

2)解:相似.理由如下:

,

,

又∵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于某一函數(shù)給出如下定義:對于任意實數(shù),當(dāng)自變量時,函數(shù)關(guān)于的函數(shù)圖象為,將沿直線翻折后得到的函數(shù)圖象為,函數(shù)的圖象由兩部分共同組成,則函數(shù)為原函數(shù)的對折函數(shù),如函數(shù)()的對折函數(shù)為.

(1)求函數(shù)()的對折函數(shù);

(2)若點在函數(shù)()的對折函數(shù)的圖象上,求的值;

(3)當(dāng)函數(shù)()的對折函數(shù)與軸有不同的交點個數(shù)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點A為中心,把△ABC逆時針旋轉(zhuǎn)120°,得到△AB'C′(點B、C的對應(yīng)點分別為點B′、C′),連接BB',若AC'BB',則∠CAB'的度數(shù)為( 。

A.45°B.60°C.70°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為△ABC的外接圓,DOCAB的交點,E為線段OC延長線上一點,且∠EAC=∠ABC

1)求證:直線AEO的切線.

2)若DAB的中點,CD6AB16

O的半徑;

求△ABC的內(nèi)心到點O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年“519(我要走)全國徒步日(江夏站)”暨第六屆“環(huán)江夏”徒步大會519日在美麗的花山腳下降重舉行.組委會(活動主辦方)為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩種紀(jì)念品發(fā)放.其中甲種紀(jì)念品每件售價120元,乙種紀(jì)念品每件售價80.

1)如果購買甲、乙兩種紀(jì)念品一共花費了9600元,求購買甲、乙兩種紀(jì)念品各是多少件?

2)設(shè)購買甲種紀(jì)念品件,如果購買乙種紀(jì)念品的件數(shù)不超過甲種紀(jì)念品的數(shù)量的2倍,并且總費用不超過9400.問組委會購買甲、乙兩種紀(jì)念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線經(jīng)過點

(1)求拋物線解析式;

(2)設(shè)點是拋物線上一動點,且位于第四象限,四邊形是以為對角線的平行四邊形.

①求平行四邊形的面積之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

②當(dāng)平行四邊形的面積為24時,請判斷平行四邊形是否為菱形?

③是否存在點,使平行四邊形為正方形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,EBC邊上的一點.連結(jié)AE

1)若AB=AE, 求證:∠DAE=∠D

2)若點EBC的中點,連接BD,交AEF,求EFFA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)的圖象與x軸交于點A、B,與y軸交于點C,點A的坐標(biāo)為(4,0)

1b=  ,點B的坐標(biāo)是  

2)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由

3)如圖2,點D是拋物線上第二象限內(nèi)的一動點,過點DDMAC于點M,是否存在點D,使得CDM中的某個角恰好等于∠BAC2倍?若存在,寫出點D的橫坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末上午小明和大強(qiáng)分別從家出發(fā),相約一起去體育館打球,小明比大強(qiáng)先出發(fā),大強(qiáng)出發(fā)后與小明相遇.小明的行進(jìn)速度為,設(shè)小明、大強(qiáng)兩人相距與小明行進(jìn)的時間之間的函數(shù)關(guān)系如圖所示:

(1)填空: ,小明和大強(qiáng)家相距

(2)求線段對應(yīng)的函數(shù)表達(dá)式,并直接寫出自變量的取值范圍;

(3)設(shè)大強(qiáng)離家的距離為,小明行進(jìn)的時間,求的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.

查看答案和解析>>

同步練習(xí)冊答案