【題目】根據(jù)下列證明過程填空:

已知:如 圖,ADBC于點(diǎn)DEFBC于點(diǎn)F,交AB于點(diǎn)G,交CA的延長線于點(diǎn)E,1=2

求證:AD平分∠BAC,填寫證明中的空白.

證明:

ADBC,EFBC (已知),

EFAD     ),

   =   兩直線平行,內(nèi)錯(cuò)角相等 ),

   =CAD     ).

    (已知),

   ,即AD平分∠BAC    ).

【答案】平面內(nèi),垂直于同一條直線的兩直線平行,∠1BAD,2,兩直線平行,同位角相等,∠1=2BAD=CAD,角平分線定義.

【解析】試題分析:由ADBCEFBC,可得ADEF,由兩直線平行,內(nèi)錯(cuò)角相等可得∠1=BAD,由兩直線平行,同位角相等可得∠2=CAD,又因?yàn)椤?/span>1=2,所以∠BAD=CAD,即AD平分∠BAC

試題解析:

證明:∵ADBC,EFBC

∴∠ADC=EFC=90°,

ADEF(平面內(nèi),垂直于同一條直線的兩直線平行)

∴∠1=BAD(兩直線平行,內(nèi)錯(cuò)角相等),

2=CAD(兩直線平行,同位角相等),

∵∠1=2(已知),

∴∠BAD=CADAD平分∠BAC角平分線定義).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4個(gè)小長方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)2中陰影部分的面積為 ;

(2)觀察圖2,請(qǐng)你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系:

(3)x+y=-6,xy=2.75,x-y= ;

(4)實(shí)際上有許多恒等式可以用圖形的面積來表示,如圖3,它表示等式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法正確的是( )

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)下面朝上50

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《列子》中《歧路亡羊》寫道:

楊子之鄰人亡羊,既率其黨,又請(qǐng)楊子之豎追之。楊 子曰:!亡一羊,何追者之眾?”鄰人日:“多歧路!奔 反,問:獲羊乎?”日:“亡之矣!痹唬骸稗赏鲋?”曰:“歧路 之中又有歧焉,吾不知所之,所以反也.”

如圖,假定所有的分叉口都各有兩條新的歧路,并且丟失的羊走每條歧路的可能性都相等.

(1)到第n次分歧時(shí),共有多少條歧路?以當(dāng)羊走過n個(gè)三叉路口后,找到羊的概率是多少?

2)當(dāng)n=5時(shí),派出6個(gè)人去找羊,找到羊的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是9×7的正方形點(diǎn)陣,其水平方向和豎起直方向的兩格點(diǎn)間的長度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過畫圖分析、探究回答下列問題:

(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;

(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形的面積為2的概率;

(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以AB、M為頂點(diǎn)的三角形為直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A-1,2)、B-3,0)、C0,0

(1)請(qǐng)直接寫出點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo);

2)以C為位似中心,在x軸下方作△ABC的位似圖形,使放大前后位似比為12,請(qǐng)畫出圖形,并求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°AB=6cm,AD=24cm,BCCD的長度之和為34cm,其中C是直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)你探究當(dāng)C離點(diǎn)B有多遠(yuǎn)時(shí),ACD是以DC為斜邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】佳佳果品店在批發(fā)市場(chǎng)購買某種水果銷售,第一次用1 200元購進(jìn)若干千克,并以8/kg出售,很快售完.由于水果暢銷,第二次購買時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,1 452元所購買的數(shù)量比第一次多20 kg,9/kg售出100 kg,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)50%售完剩余的水果.

(1)第一次水果的進(jìn)價(jià)是每千克多少元?

(2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,它的三邊長是三個(gè)連續(xù)的正偶數(shù),且ACBC.

(1)這個(gè)直角三角形的各邊長;

(2)若動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以1個(gè)單位長度/秒的速度運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),請(qǐng)運(yùn)用尺規(guī)作圖作出以點(diǎn)Q為圓心,QC為半徑,且與AB邊相切的圓,并求出此時(shí)點(diǎn)Q的運(yùn)動(dòng)時(shí)間.

(3) 若動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以1個(gè)單位長度/秒的速度運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),以Q為圓心、QC長為半徑作圓,請(qǐng)?zhí)骄奎c(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中,運(yùn)動(dòng)時(shí)間t為怎樣的值時(shí),⊙Q與邊AB分別有0個(gè)公共點(diǎn)、1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案