某商家計(jì)劃從廠家采購(gòu)空調(diào)和冰箱兩種產(chǎn)品共20臺(tái),空調(diào)的采購(gòu)單價(jià)y1(元/臺(tái))與采購(gòu)數(shù)量x1(臺(tái))滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購(gòu)單價(jià)y2(元/臺(tái))與采購(gòu)數(shù)量x2(臺(tái))滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購(gòu)空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購(gòu)單價(jià)不低于1200元,問(wèn)該商家共有幾種進(jìn)貨方案?
(2)該商家分別以1760元/臺(tái)和1700元/臺(tái)的銷售單價(jià)售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問(wèn)采購(gòu)空調(diào)多少臺(tái)時(shí)總利潤(rùn)最大?并求最大利潤(rùn).
(1)5   (2)采購(gòu)空調(diào)15臺(tái)時(shí),獲得總利潤(rùn)最大,最大利潤(rùn)值為10650元.

試題分析:(1)由題意可設(shè)空調(diào)的采購(gòu)數(shù)量為x臺(tái),則冰箱的采購(gòu)數(shù)量為(20﹣x)臺(tái),根據(jù)題中的不等量關(guān)系可列出關(guān)于x的不等式組,求解得到x的取值范圍,再根據(jù)空調(diào)臺(tái)數(shù)是正整數(shù)確定進(jìn)貨方案;
(2)按常規(guī)可設(shè)總利潤(rùn)為W元,根據(jù)總利潤(rùn)等于空調(diào)和冰箱的利潤(rùn)之和整理得到W與x的函數(shù)關(guān)系式,整理成頂點(diǎn)式形式,然后根據(jù)二次函數(shù)的性質(zhì)求出最大值即可.
試題解析:(1)設(shè)空調(diào)的采購(gòu)數(shù)量為x臺(tái),則冰箱的采購(gòu)數(shù)量為(20﹣x)臺(tái),
由題意得,
解不等式①得,x≥11,
解不等式②得,x≤15,
所以,不等式組的解集是11≤x≤15,
∵x為正整數(shù),
∴x可取的值為11、12、13、14、15,
所以,該商家共有5種進(jìn)貨方案;
(2)設(shè)總利潤(rùn)為W元,
y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,
則W=(1760﹣y1)x1+(1700﹣y2)x2,
=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),
=1760x+20x2﹣1500x+10x2﹣800x+12000,
=30x2﹣540x+12000,
=30(x﹣9)2+9570,
當(dāng)x>9時(shí),W隨x的增大而增大,
∵11≤x≤15,
∴當(dāng)x=15時(shí),W最大值=30(15﹣9)2+9570=10650(元),
答:采購(gòu)空調(diào)15臺(tái)時(shí),獲得總利潤(rùn)最大,最大利潤(rùn)值為10650元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+x-2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,分別過(guò)點(diǎn)B,C作y軸,x軸的平行線,兩平行線交于點(diǎn)D,將△BDC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使點(diǎn)D旋轉(zhuǎn)到y(tǒng)軸上得到△FEC,連接BF.
(1)求點(diǎn)B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點(diǎn)P,使得以點(diǎn)P,A,B為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo).
(3)該二次函數(shù)的對(duì)稱軸交x軸于C點(diǎn).連接BC,并延長(zhǎng)BC交拋物線于E點(diǎn),連接BD,DE,求△BDE的面積.
(4)拋物線上有一個(gè)動(dòng)點(diǎn)P,與A,D兩點(diǎn)構(gòu)成△ADP,是否存在SADP=SBCD?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為   ,求此時(shí)線段EF的長(zhǎng);
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為   ,此時(shí)AE與BF的數(shù)量關(guān)系是   
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過(guò)多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請(qǐng)直接寫(xiě)出其邊長(zhǎng);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(0,4),點(diǎn)A在線段OP上,點(diǎn)B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過(guò)點(diǎn)C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過(guò)O,C兩點(diǎn)的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需證明);用含t的代數(shù)式表示A點(diǎn)縱坐標(biāo):A(0,       ;
(2)求點(diǎn)C的坐標(biāo),并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時(shí),連接OD,若此時(shí)拋物線與線段OD只有唯一的公共點(diǎn)O,求a的取值范圍;
(4)當(dāng)拋物線開(kāi)口向上,對(duì)稱軸是直線,頂點(diǎn)隨著t的增大向上移動(dòng)時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)(0,),(3,4).
(1)求拋物線的表達(dá)式及對(duì)稱軸;
(2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),記拋物線在,之間的部分為圖象(包含,兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某種上屏每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx-75.其圖像如圖所示.
銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤(rùn)最大?最大利潤(rùn)為多少元?
銷售單價(jià)在什么范圍時(shí),該種商品每天的銷售利潤(rùn)不低于16元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y=x2+2x+3的頂點(diǎn)坐標(biāo)是( 。
A.(1,2)B.(-1,2)C.(1,4)D.(-1,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)y=
(x-1)2-1(x≤3)
(x-5)2-1(x>3)
,若使y=k成立的x值恰好有三個(gè),則k的值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案