【題目】如圖1,拋物線y=﹣x2+2x+3的圖象與x軸交于點A、B,與y軸交于點C,連接BC.
(1)求直線BC的解析式;
(2)如圖2,點P是拋物線在第一象限內(nèi)的一點,作PQ∥y軸交BC于Q,當線段PQ的長度最大時,在x軸上找一點M,使PM+CM的值最小,求PM+CM的最小值;
(3)拋物線的頂點為點E,連接AE,在拋物線上是否存在一點N,使得直線AN與直線AE的夾角為45度,若存在請直接寫出滿足條件的點N的坐標,若不存在,請說明理由.
【答案】(1)y=﹣x+3;(2);(3)點N的坐標為:(﹣,).
【解析】
(1)拋物線x軸交于點A、B,與y軸交于點C,則點A、B、C的坐標分別為:(-1,0)、(3,0)、(0,3),即可求解;
(2)取點C關(guān)于x軸的對稱點C′(0,-3),連接PC′交x軸于點M,則點M為所求點,此時PM+CM的最小,即可求解;
(3)設(shè)GM=AG=x,則GE=2x,AE=AG+EG=3x=,解得:x=,HM2=AH2-OM2=(x)24=,故HM=,則點H(1,),將點A、H代入一次函數(shù)表達式并解得:直線AH(N)的表達式為:y=x+,即可求解.
解:(1)拋物線y=﹣x2+2x+3,拋物線x軸交于點A、B,與y軸交于點C,
則點A、B、C的坐標分別為:(﹣1,0)、(3,0)、(0,3),
∴將點B、C的坐標代入一次函數(shù)表達式:y=kx+b并解得:
直線BC的表達式為:y=﹣x+3;
(2)設(shè)點P(x,﹣x2+2x+3),則點Q(x,﹣x+3),
PQ=﹣x2+2x+3+x﹣3=﹣x2+3x,
當x=時,PQ有最大值,此時點P(,);
取點C關(guān)于x軸的對稱點C′(0,﹣3),連接PC′交x軸于點M,則點M為所求點,此時PM+CM的最小,
∴PM+CM的最小值=PC′=;
(3)如圖,設(shè)直線AN交對稱軸于點H,故點H作HG⊥AE于點G,對稱軸交x軸于點M,
tan∠AEM=,設(shè)GM=AG=x,則GE=2x,
AE=AG+EG=3x=,解得:x=,
HM2=AH2﹣OM2=()2﹣4=,
∴HM=,則點H(1,),
將點A、H代入一次函數(shù)表達式并解得:
直線AH(N)的表達式為:;
聯(lián)立直線BC和直線AH,則:
,
解得:x=或﹣1(舍去﹣1),
故點N的坐標為:(﹣,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿與地面仍保持垂直的關(guān)系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測得米,塔高米.在某一時刻的太陽照射下,未折斷樹桿落在地面的影子長為米,且點、、、在同一條直線上,點、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結(jié)果精確到,參考數(shù)據(jù): , , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn)問題)愛好數(shù)學(xué)的小明在做作業(yè)時碰到這樣的一道題目:
如圖1,點O為坐標原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結(jié)AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值.
(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側(cè)作等邊三角形BOE,連接AE.
(1)請你找出圖中與OC相等的線段,并說明理由;
(2)請直接寫出線段OC的最大值.
(遷移拓展)
(3)如圖2,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請求出AC的最值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬州區(qū)中小學(xué)社會活動實踐基地開展了人與社會、人與自然、人與自我的綜合實踐活動,其中高空項目能培養(yǎng)學(xué)生不怕困難,不畏艱險的精神.在高空項目中有以下四個特色實踐活動:“A.合力制勝,B.空中斷橋,C.絕壁飛胎,D.天羅地網(wǎng)”.為了解學(xué)生最喜愛哪項綜合實踐活動,隨機抽取部分學(xué)生進行問卷調(diào)查(每位學(xué)生只能選擇一項),將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息回答下列問題:
(1)本次一共調(diào)查了 名學(xué)生,并補全條形統(tǒng)計圖;
(2)現(xiàn)有最喜愛A,B,C,D活動項目的學(xué)生各一人,學(xué)校要從這四人中隨機選取兩人交流活動體會,請用列表或畫樹狀圖的方法求出恰好選取最喜愛C和D項目的兩位學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)的對稱軸為x=-1,與x軸的一個交點為(2,0).若關(guān)于x的一元二次方程ax2+bx+c=p(p>0)有整數(shù)根,則p的值有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)y=-x2-2x+3說法正確的是( 。
A. 當時,函數(shù)最大值4
B. 當時,函數(shù)最大值2
C. 將其圖象向上平移3個單位后,圖象經(jīng)過原點
D. 將其圖象向左平移3個單位后,圖象經(jīng)過原點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長為16m,寬為6m,拋物線的最高點C離地面AA1的距離為8m.
(1)按如圖所示的直角坐標系,求表示該拋物線的函數(shù)表達式.
(2)一大型汽車裝載某大型設(shè)備后,高為7m,寬為4m,如果該隧道內(nèi)設(shè)雙向行車道,那么這輛貸車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com