【題目】如圖,為的外接圓,,作直線,于.
(1)圖1,求證:是的切線;
(2)圖2,交于點,過點作,垂足為,交于點.
①求證:;
②若,,求的長.
【答案】(1)證明見詳解;(2)①證明見詳解;②.
【解析】
(1)連接OA,OB,OC,由AC=AB,OA=OA,OC=OB可證出△OAC≌△OAB(SSS),利用全等三角形的性質(zhì)可得出∠OAC=∠OAB,即AO平分∠BAC,利用垂徑定理可得出AO⊥BC,結(jié)合AD//BC可得出AD⊥AO,由此即可證出AD是⊙O的切線;
(2)①連接AE,由圓內(nèi)接四邊形對角互補結(jié)合∠BCE=90°可得出∠BAE=90°,由同角的余角相等可得出∠BAG=∠AEB,結(jié)合∠ABC=∠ACB=∠AEB可得出∠BAG=∠ABC,由平行線的性質(zhì)可得∠BAD+∠ABC=180°,即可得結(jié)論;
②由∠ADC=∠AFB=90°,∠ACD=∠ABF,AC=AB可證出△ADC≌△AFB(AAS),利用全等三角形的性質(zhì)可求出AF,BF的長,設(shè)FG=x,在Rt△BFG中,利用勾股定理可求出x的值,即可求解.
證明:(1)如圖1,連接OA,OB,OC.
在△OAC和△OAB中,
,
∴△OAC≌△OAB(SSS),
∴∠OAC=∠OAB,
∴AO平分∠BAC,
∴AO⊥BC.
又∵AD//BC,
∴AD⊥AO,
∴AD是⊙O的切線.
(2)①證明:如圖2,連接AE.
∵AD//BC,AD⊥CD,
∴∠BCE=90°,
∴∠BAE=90°.
又∵AF⊥BE,
∴∠AFB=90°.
∵∠BAG+∠EAF=∠AEB+∠EAF=90°,
∴∠BAG=∠AEB.
∵∠ABC=∠ACB=∠AEB,
∴∠BAG=∠ABC,
∵AD//BC,
∴∠BAD+∠ABC=180°,
∴∠BAD+∠BAG=180°;
②在△ADC和△AFB中,
,
∴△ADC≌△AFB(AAS),
∴AF=AD=3,BF=CD=4,
∵∠BAG=∠ABC,
∴AG=BG
設(shè)FG=x,在Rt△BFG中,FG=x,BF=4,BG=AG=x+3,
∴FG2+BF2=BG2,即x2+42=(x+3)2,
∴x=,
∴FG=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如釁,在Rt△ABC中,∠ACB=90°,sin∠BAC=,點D在AB的延長線上,BD=BC,AE平分∠BAC交CD于點E,若AE=5,則點A到直線CD的距離AH為________,BD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC.BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E.連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=.OE=2,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在雙曲線的第一圖像的那一支上,垂直于軸于點,點在軸正半軸上,且,點在線段上,且,點為的中點,若面積為3,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),為坐標(biāo)原點,點在軸的正半軸上,四邊形是平行四邊形,,,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點,與交于點.
(1)求點的坐標(biāo)和反比例函數(shù)解析式;
(2)若,求點的坐標(biāo);
(3)在(2)中的條件下,如圖(2),點為直線上的一個動點,點為雙曲線上的一個動點,是否在這樣的點、點,使以、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出所有點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB邊上且DE⊥BE.
(1)判斷直線AC與△DBE外接圓的位置關(guān)系,并說明理由;
(2)若AD=6,AE=6,求△DBE外接圓的半徑及CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸,y軸分別交于點B,C,點A在x軸負(fù)半軸上,且OA=OB,拋物線y=ax2+bx+4經(jīng)過A,B,C三點.
(1)求拋物線的解析式;
(2)點P是第一象限內(nèi)拋物線上的動點,設(shè)點P的橫坐標(biāo)為m,過點P作PD⊥BC,垂足為D,用含m的代數(shù)式表示線段PD的長,并求出線段PD的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com