【題目】如圖,拋物線 x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸=–1,P為拋物線上第二象限的一個動點(diǎn).

(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時,求點(diǎn)P的橫坐標(biāo);

(3)當(dāng)點(diǎn)P在運(yùn)動過程中,求四邊形PABC面積最大時的值及此時點(diǎn)P的坐標(biāo).

【答案】(1)二次函數(shù)的解析式為,頂點(diǎn)坐標(biāo)為(–1,4);(2)點(diǎn)P橫坐標(biāo)為–1;(3)當(dāng)時,四邊形PABC的面積有最大值,點(diǎn)P().

【解析】試題分析:1)已知拋物線 軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點(diǎn)式,直接寫出頂點(diǎn)坐標(biāo)即可;(2)y=2代入解析式,解方程求得x的值,即可得點(diǎn)P的橫坐標(biāo),從而求得點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)P(), ,根據(jù)得出四邊形PABCx之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點(diǎn)P的坐標(biāo).

試題解析:

1)∵拋物線 軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸=﹣1,

 , 解得:

∴二次函數(shù)的解析式為 =,

∴頂點(diǎn)坐標(biāo)為(﹣1,4)

(2)設(shè)點(diǎn)P(,2),

=2,

解得=﹣1(舍去)或=﹣﹣1,

∴點(diǎn)P(﹣﹣1,2).

(3)設(shè)點(diǎn)P(), ,

,

∴當(dāng)時,四邊形PABC的面積有最大值.

所以點(diǎn)P().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段圓弧與長度為1的正方形網(wǎng)格的交點(diǎn)是A、B、C.

(1)請完成以下操作:

①以點(diǎn)O為原點(diǎn),垂直和水平方向為軸,網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD;

(2)請在(1)的基礎(chǔ)上,完成下列填空:⊙D的半徑為__________;點(diǎn)(6,–2)在⊙D__________;(填”、“內(nèi)”、“”)ADC的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC∽△DEC,CA=CB,且點(diǎn)EAB的延長線上.

(1)求證:AE=BD;

(2)求證:△BOE∽△COD;

(3)已知CD=10,BE=5,OD=6,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有公共邊,且,,,的角平分線于點(diǎn),連接.

1)求的度數(shù);

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點(diǎn)M(B,M,D三點(diǎn)在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鈍角的面積為12,最長邊平分,點(diǎn)、分別是、上的動點(diǎn),則的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,,現(xiàn)有兩點(diǎn)、分別從點(diǎn)、同時出發(fā),沿三角形的邊運(yùn)動,已知點(diǎn)的速度為,點(diǎn)的速度為.當(dāng)點(diǎn)第一次回到點(diǎn)時,點(diǎn)、同時停止運(yùn)動,設(shè)運(yùn)動時間為.

1)當(dāng)為何值時,、兩點(diǎn)重合;

2)當(dāng)點(diǎn)、分別在、邊上運(yùn)動,的形狀會不斷發(fā)生變化.

①當(dāng)為何值時,是等邊三角形;

②當(dāng)為何值時,是直角三角形;

3)若點(diǎn)、都在邊上運(yùn)動,當(dāng)存在以為底邊的等腰時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點(diǎn),MBC邊上的動點(diǎn)(點(diǎn)M不與B,C重合),CNDM,與AB交于點(diǎn)N,連接OM,ON,MN.下列四個結(jié)論:①△CNB≌△DMC;OM=ON;③△OMN∽△OAD;AN2+CM2=MN2,其中正確結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點(diǎn)O,過點(diǎn)AAEBC于點(diǎn)E,延長BCF,使CFBE,連接DF

1)求證:四邊形AEFD是矩形;

2)若AC10,∠ABC60°,則矩形AEFD的面積是   

查看答案和解析>>

同步練習(xí)冊答案