【題目】如圖,已知拋物線y=ax2+ x+cx軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點PPEx軸,垂足為E,交直線l于點F.

(1)試求該拋物線表達式;

(2)求證:點C在以AD為直徑的圓上;

(3)是否存在點P使得四邊形PCOF是平行四邊形,若存在求出P點的坐標,不存在請說明理由。

【答案】(1)y= x2+ x﹣4;(2)見解析;(3)(﹣,﹣)或(﹣8,﹣4).

【解析】試題分析:(1)將點A和點C的坐標代入拋物線的解析式可得到關(guān)于a、c的方程組,然后解方程組求得ac的值即可;

(2)求出D點坐標,根據(jù)兩點間距離公式分別求出AD、AC、CD的長,然后根據(jù)勾股定理的逆定理證明出△ADC為直角三角形即可得出結(jié)論;

(3)設(shè)Pm,m2m-4),則F(m,-m-4),則PF=-m2m,當(dāng)PFOC時,四邊形PCOF是平行四邊形,然后依據(jù)PFOC列方程求解即可

試題解析:

(1)解:由題意得: ,解得: ,

∴拋物線的表達式為y x2 x﹣4.

(2)證明:把y0代入yx﹣4得:﹣ x﹣40,

解得:x﹣8.

D(﹣8,0).

OD8.

A(2,0),C(0,﹣4),AD2﹣(﹣8)10.

由兩點間的距離公式可知:AC2224220,DC2824280,AD2100,

AC2CD2AD2

∴△ACD是直角三角形,且∠ACD90°,

∴點C在以AD為直徑的圓上;

(3)解:設(shè)Pm, m2 m﹣4),則F(m,﹣ m﹣4).

PF(﹣ m﹣4)﹣( m2 m﹣4)m2m

PEx軸,∴PFOC

PFOC時,四邊形PCOF是平行四邊形.

m2m4,解得:mm﹣8.

當(dāng)m時, m2 m﹣4,

當(dāng)m﹣8時, m2 m﹣4﹣4.

∴點P的坐標為(﹣ ,﹣ )或(﹣8,﹣4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭,王先生家中買了一輛小轎車,他連接記錄了7天中每天行駛的路程(如下表),以50km為標準,多于50km的記為,不足50km的記為,剛好50km的記為“0”.

(1)請求出這七天中平均每天行駛多少千米?

(2)若每行駛100km需用汽油6升,汽油價5.8/升,請估計王先生家一個月(30天計)的汽油費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,天津電視塔頂部有一桅桿部分AB,數(shù)學(xué)興趣小組的同學(xué)在距地面高為4.2m的平臺D處觀測電視塔桅桿頂部A的仰角為67.3°,觀測桅桿底部B的仰角為58°.已知點A,B,C在同一條直線上,EC=172m.求測得的桅桿部分AB的高度和電視塔AC的高度.(結(jié)果保留小數(shù)點后一位).

參考數(shù)據(jù):tan67.3°2.39,tan60°1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體院要了解籃球?qū)I(yè)學(xué)生投籃的命中率,對學(xué)生進行定點投籃測試,規(guī)定每人投籃20次,測試結(jié)束后隨機抽查了一部分學(xué)生投中的次數(shù),并分為五類,:投中11次;投中12次;:投中13次;:投中14次;:投中15次根據(jù)調(diào)查結(jié)果繪制了下面尚不完整的統(tǒng)計圖1、圖2:

回答下列問題:

(1)本次抽查了 名學(xué)生,圖2中的m=

(2)補全條形統(tǒng)計圖,并指出中位數(shù)在哪一類

(3)求最高的命中率及命中最高的人數(shù)所占的百分比

(4)若體院規(guī)定籃球?qū)I(yè)學(xué)生定點投籃命中率不低于65%記作合格,估計該院籃球?qū)I(yè)210名學(xué)生中約有多少人不合格

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一對數(shù),如下表,第個數(shù)比第n個數(shù)大2(其中n是正整數(shù))

1

2

3

4

5

……

a

b

c

(1)5個數(shù)表示為______;第7個數(shù)表示為_______.

(2)若第10個數(shù)是5,第11個數(shù)是8,第12個數(shù)為9,則a______b_____,c______.

(3)2019個數(shù)可表示為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司從2014年開始投入技術(shù)改進資金,經(jīng)技術(shù)改進后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:

2013

2014

2015

2016

投入技改資金(萬元)

2.5

3

4

4.5

產(chǎn)品成本(萬元/件)

7.2

6

4.5

4

1)請你認真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;

2)按照這種變化規(guī)律,若2017年已投入資金5萬元.

①預(yù)計生產(chǎn)成本每件比2016年降低多少萬元?

②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了有效控制酒后駕車,某天黃石交警大隊的一輛警車在東西方向的花湖大道上巡視,警車從某地A處出發(fā),規(guī)定向東方向為正,當(dāng)天行駛紀錄如下(單位:千米)

+10,-9+7,-15+6,-5+4,-2

1)此時,這輛巡邏的汽車司機如何向隊長描述他的位置?

2)如果警車行駛1千米耗油0.2升,油箱有油10升,現(xiàn)在警車要回到出發(fā)點A處,那么油箱的油夠不夠?若不夠,途中至少需補充多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點EBC的中點,點FAB邊上,,HBC延長線上,且CH=AF,連接DF,DEDH。

1)求證DF=DH;

2)求的度數(shù)并寫出計算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的第一邊長為a22ab+b2,第二邊比第一邊的3倍少3,三角形的周長是5a27ab+5b21.

1)求這個三角形的第三邊長;

2)當(dāng)a=,b=-3時,求第三邊長.

查看答案和解析>>

同步練習(xí)冊答案