【題目】某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展了主題為“霧霾知多少”的專題調(diào)查括動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“A.非常了解”、“B.比較了解”、“C.基本了解”、“D.不太了解”四個等級,將所得數(shù)據(jù)進行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結(jié)合圖表中的信息解答下列問題
等級 | A | B | C | D |
頻數(shù) | 40 | 120 | 36 | n |
頻率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形統(tǒng)計圖中,A部分所對應(yīng)的扇形的圓心角是 °,所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是 ;
(3)若該校共有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中“比較了解”人數(shù)約為多少?
【答案】(1)0.6,4;(2)72,B(比較了解);(3)900人
【解析】
(1)先根據(jù)“非常了解”的頻數(shù)及其頻率求得總?cè)藬?shù),再由頻率=頻數(shù)÷總數(shù)求解可得;
(2)用360°乘以“非常了解”的頻率可得圓心角度數(shù),再根據(jù)眾數(shù)的定義進一步求解即可;
(3)總?cè)藬?shù)乘以樣本中“比較了解”的頻率即可得.
(1)∵本次調(diào)查的總?cè)藬?shù)為40÷0.2=200(人),
∴m=120÷200=0.6,n=200×0.02=4,
故答案為:0.6,4;
(2)等級為“非常了解”的學(xué)生在扇形統(tǒng)計圖中所對應(yīng)的扇形的圓心角的度數(shù)為:360°×0.2=72°;
根據(jù)表格信息可知,其中B(比較了解)出現(xiàn)次數(shù)最多,所以所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是B(比較了解).
故答案為:72,B(比較了解);
(3)1500×0.6=900(人),
答:估計這些學(xué)生中“比較了解”人數(shù)約為900人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位需招聘一名技術(shù)員,對甲、乙、丙三名候選人進行了筆試和面試兩項測試,其成績?nèi)缦卤硭荆鶕?jù)錄用程序,該單位又組織了名人員對三人進行民主評議,其得票率如扇形圖所示,每票分(沒有棄權(quán)票。每人只能投票)
測試項目 | 測試成績分 | ||
甲 | 乙 | 丙 | |
筆試 | |||
面試 |
(1)請算出三人的民主評議得分.
(2)該單位將筆試、面試、民主評議三項得分按確定綜合成績,且民主評議得分低于分不錄取,誰將被錄用?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務(wù)精神,傳播“奉獻他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)“割圓術(shù)”,奠定了中國圓周率計算在世界上的領(lǐng)先地位.劉徽提出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”,由此求得圓周率的近似值.如圖,設(shè)半徑為的圓內(nèi)接正邊形的周長為,圓的直徑為,當(dāng)時,,則當(dāng)時,______.(結(jié)果精確到0.01,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某水果加工公司分兩次采購了一批桃子,第一次費用為25萬元,第二次費用為30萬元.已知第一次采購時每噸桃子的價格比去年的平均價格上漲了0.1萬元,第二次采購時每噸桃子的價格比去年的平均價格下降了0.1萬元,第二次采購的數(shù)量是第一次采購數(shù)量的2倍.
(1)試問去年每噸桃子的平均價格是多少萬元?兩次采購的總數(shù)量是多少噸?
(2)該公司可將桃子加工成桃脯或桃汁,每天只能加工其中一種.若單獨加工成桃脯,每天可加工3噸桃子,每噸可獲利0.7萬元;若單獨加工成桃汁,每天可加工9噸桃子,每噸可獲利0.2萬元.為出口需要,所有采購的桃子必須在30天內(nèi)加工完畢.
①根據(jù)該公司的生產(chǎn)能力,加工桃脯的時間不能超過多少天?
②在這次加工生產(chǎn)過程中,應(yīng)將多少噸桃子加工成桃脯才能獲取最大利潤?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:
已知:如圖,直線l和直線l外一點A
求作:直線AP,使得AP∥l
作法:如圖
①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.
②連接AC,AB,延長BA到點D;
③作∠DAC的平分線AP.
所以直線AP就是所求作的直線
根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依據(jù))
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依據(jù))
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點,將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點的“理想值”,記作.如的“理想值”.
(1)①若點在直線上,則點的“理想值”等于_______;
②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.
(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標(biāo)的取值范圍;
(3),是以為半徑的上任意一點,當(dāng)時,畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級6班的一個互助學(xué)習(xí)小組組長收集并整理了組員們討論如下問題時所需的條件.如圖所示,在四邊形中,點分別在邊上,____________________.求證:四邊形是平行四邊形.你能在橫線上填上最少且簡捷的條件使結(jié)論成立嗎?條件分別是:①;②;③;④四邊形是平行四邊形,其中A、B、C、D四位同學(xué)所填條件符合題目要求的是( 。
A.①②B.①②③C.①④D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)是(10,0),點B的坐標(biāo)為(8,0),點C,D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標(biāo)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com