【題目】如圖,分別過(guò)第二象限內(nèi)的點(diǎn),軸的平行線,與,軸分別交于點(diǎn),,與雙曲線分別交于點(diǎn)

下面三個(gè)結(jié)論,

①存在無(wú)數(shù)個(gè)點(diǎn)使

②存在無(wú)數(shù)個(gè)點(diǎn)使;

③存在無(wú)數(shù)個(gè)點(diǎn)使

所有正確結(jié)論的序號(hào)是__________

【答案】①②③

【解析】

如圖,設(shè)Cm,),Dn,),則Pn,),利用反比例函數(shù)k的幾何意義得到SAOC=3,SBOD=3,則可對(duì)①進(jìn)行判斷;根據(jù)三角形面積公式可對(duì)②進(jìn)行判斷;通過(guò)計(jì)算S四邊形OAPBSACD得到mn的關(guān)系可對(duì)對(duì)③進(jìn)行判斷.

解:如圖,設(shè)Cm),Dn,),則Pn,),
SAOC=3,SBOD=3,
SAOC=SBOD;所以①正確;
SPOA=- ,SPOB=-,
SPOA=SPOB;所以②正確;
S四邊形OAPB=-n× ,
∴當(dāng)- ,即m2-mn-2n2=0,所以m=2n(舍去)或m=-n,此時(shí)P點(diǎn)為無(wú)數(shù)個(gè),所以③正確.
故答案為①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在以放飛青春夢(mèng)想,展示你我風(fēng)采為主題的校園文化藝術(shù)節(jié)期間,舉辦了.歌唱,.舞蹈,.繪畫(huà),.演講共四個(gè)類別的比賽,要求每位學(xué)生必須參加且僅能參加一個(gè)類別.小紅隨機(jī)調(diào)查了部分學(xué)生的報(bào)名情況,并繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:

1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計(jì)圖中部分的圓心角度數(shù)是多少?

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)若全校共有1500名學(xué)生,請(qǐng)估計(jì)該校報(bào)名參加繪畫(huà)和演講兩個(gè)類別的比賽的學(xué)生共有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)P,FCD上一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,NAFDE,連接PN,則以下結(jié)論中:①SABM4SFDM;②PN;③tanEAF;④△PMN∽△DPE.正確的是________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,點(diǎn)邊上一動(dòng)點(diǎn)(與點(diǎn)不重合),連接的兩邊所在射線以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)分別交射線于點(diǎn)

1)依題意補(bǔ)全圖形;

2)若,求的大小(用含的式子表示) ;

3)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形的內(nèi)接四邊形,對(duì)角線、交于

1)求證:;

2)作的角分線于點(diǎn),連接,若,連接、交于,求證:;

3)在(2)的條件下,連接,延長(zhǎng)于點(diǎn),若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是邊BC上的動(dòng)點(diǎn),連接AD,點(diǎn)C關(guān)于直線AD的對(duì)稱點(diǎn)為點(diǎn)E,射線BE與射線AD交于點(diǎn)F.

1)在圖1中,依題意補(bǔ)全圖形;

2)記),求的大;(用含的式子表示)

3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為拋物線上一動(dòng)點(diǎn),以為頂點(diǎn),且經(jīng)過(guò)原點(diǎn)的拋物線,記作“”,設(shè)其與軸另一交點(diǎn)為,點(diǎn)的橫坐標(biāo)為

1)①當(dāng)為直角三角形時(shí),________;

②當(dāng)為等邊三角形時(shí),求此時(shí)“”的解析式;

2)若點(diǎn)的橫坐標(biāo)分別為1,2,3,……為正整數(shù))時(shí),拋物線“”,分別記作“”,“”…“”,設(shè)其與軸另一交點(diǎn)分別為,,,過(guò),,…,軸的垂線,垂足分別為,,,…,

的坐標(biāo)為________,________;(用含的代數(shù)式表示)

②當(dāng)時(shí),求的值;

③是否存在這樣的,使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線、為常數(shù))的頂點(diǎn)為,等腰直角三角形的頂點(diǎn)的坐標(biāo)為,的坐標(biāo)為,直角頂點(diǎn)在第四象限.

1)如圖,若該拋物線經(jīng)過(guò)、兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;

2)平移(1)中的拋物線,使頂點(diǎn)在直線上滑動(dòng),且與交于另一點(diǎn)

①若點(diǎn)在直線下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以、、三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo);

②取的中點(diǎn),連接,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知矩形ABCDAB=4,AD=3,點(diǎn)E為邊DC上不與端點(diǎn)重合的一個(gè)動(dòng)點(diǎn),連接BE,將BCE沿BE翻折得到BEF,連接AF并延長(zhǎng)交CD于點(diǎn)G,則線段CG的最大值是( )

A.1B.1.5C.4-D.4-

查看答案和解析>>

同步練習(xí)冊(cè)答案