【題目】如圖,AB是圓O的直徑,射線AM⊥AB,點D在AM上,連接OD交圓O于點E,過點D作DC=DA交圓O于點C(A、C不重合),連接OC、BC、CE.
(1)求證:CD是⊙O的切線;
(2)若圓O的直徑等于2,填空: ①當AD=時,四邊形OADC是正方形;
②當AD=時,四邊形OECB是菱形.

【答案】
(1)解:∵AM⊥AB,

∴∠OAD=90°.

∵OA=OC,OD=OD,AD=DC,

∴△OAD≌△OCD,

∴∠OCD=∠OAD=90°.

∴OC⊥CD,

∴CD是⊙O的切線.


(2)1;
【解析】(2)①∵當四邊形OADC是正方形,

∴AO=AD=1.

所以答案是:1.②∵四邊形OECB是菱形,

∴OE=CE.

又∵OC=OE,

∴OC=OE=CE.

∴∠CEO=60°.

∵CE∥AB,

∴∠AOD=60°.

在Rt△OAD中,∠AOD=60°,AO=1,

∴AD=

所以答案是:

【考點精析】本題主要考查了菱形的判定方法和垂徑定理的相關(guān)知識點,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個等腰直角三角形A1BB1……如此作下去,若OAOB1.

(1)A1B________,SA1B1A2________;

(2)試猜想第n個等腰直角三角形的面積Sn.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩幢大樓的部分截面及相關(guān)數(shù)據(jù)如圖,小明在甲樓A處透過窗戶E發(fā)現(xiàn)乙樓F處出現(xiàn)火災(zāi),此時A,E,F在同一直線上.跑到一樓時,消防員正在進行噴水滅火,水流路線呈拋物線,在1.2m高的D處噴出,水流正好經(jīng)過E,F. 若點B和點E、點C和F的離地高度分別相同,現(xiàn)消防員將水流拋物線向上平移0.4m,再向左后退了m,恰好把水噴到F處進行滅火.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有 A、B 兩點,所表示的有理數(shù)分別為 a、b,已知 AB=12,原點 O 是線段AB 上的一點,且 OA=2OB.

1a,b;

2若動點 P,Q 分別從 AB 同時出發(fā),向右運動,點 P 的速度為每秒 2 個單位長度,點 Q 的速度為每秒 1 個單位長度,設(shè)運動時間為 t 秒,當點 P 與點 Q 重合時,P,Q 兩點停止運動.

①當 t 為何值時,2OPOQ=4

②當點 P 到達點 O 時,動點 M 從點 O 出發(fā),以每秒 3 個單位長度的速度也向右運動,當點 M 追上點 Q 后立即返回,以同樣的速度向點 P 運動,遇到點 P 后再立即返回,以同樣的速度向點 Q 運動,如此往返,直到點 P,Q 停止時,點 M 也停止運動,求在此過程中點 M 行駛的總路程,并直接寫出點 M 最后位置在數(shù)軸上所對應(yīng)的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1有4張桌子,用第一種擺設(shè)方式,可以坐___________人;當有 張桌子時,用第二種擺設(shè)方式可以坐___________人用含有n的代數(shù)式表示

2一天中午,餐廳要接待85位顧客共同就餐,但餐廳中只有20張這樣的長方形桌子可用,且每4張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級(3)班學(xué)生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).

根據(jù)以上信息,解答下列問題:

(1)該班共有多少名學(xué)生?其中穿175型校服的學(xué)生有多少人?

(2)在條形統(tǒng)計圖中,請把空缺的部分補充完整;

(3)在扇形統(tǒng)計圖中,請計算185型校服所對應(yīng)扇形圓心角的大小;

(4)求該班學(xué)生所穿校服型號的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校九年級學(xué)生的跳高水平,隨機抽取該年級50名學(xué)生進行跳高測試,并把測試成績繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個邊界值,不含后一個邊界值).

某校九年級50名學(xué)生跳高測試成績的頻數(shù)表

組別(m)

頻數(shù)

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10

(1)求a的值,并把頻數(shù)直方圖補充完整;

(2)該年級共有500名學(xué)生,估計該年級學(xué)生跳高成績在1.29m(含1.29m)以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,交CA的延長線于點E,連接AD、DE.
(1)求證:D是BC的中點;
(2)若DE=3,BD﹣AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P等于________度(用含有α的式子表示)

查看答案和解析>>

同步練習(xí)冊答案