【題目】某企業(yè)對一種設備進行升級改造,并在一定時間內進行生產營銷,設改造設備的臺數為x,現有甲、乙兩種改造方案.
甲方案:升級后每臺設備的生產營銷利潤為4000元,但改造支出費用由材料費和施工費以及其他費用三部分組成,其中材料費與x的平方成正比,施工費與x成正比,其他費用為2500元,(利潤=生產營銷利潤-改造支出費用).設甲方案的利潤為(元),經過統(tǒng)計,得到如下數據:
改造設備臺數x(臺) | 20 | 40 |
利潤(元) | 9500 | 5500 |
乙方案:升級后每臺設備的生產營銷利潤為3500元,但改造支出費用與x之間滿足函數關系式:(a為常數,),且在使用過程中一共還需支出維護費用,(利潤=生產營銷利潤-改造支出費用-維護費用).設乙方案的利潤為(元).
(1)分別求出,與x的函數關系式;
(2)若,的最大值相等,求a的值;
(3)如果要將30臺設備升級改造,請你幫助決策,該企業(yè)應選哪種方案,所獲得的利潤較大.
【答案】(1).;(2);(3)①時,選擇甲方案獲得的利潤較大;②當,選甲方案或乙方案獲得的利潤相同;③時,選擇乙方案獲得的利潤較大.
【解析】
(1)設材料費,施工費,根據題意得到與x的函數關系式,將x及的對應值代入求出m、n即可;根據題意即可列得與x的函數關系式;
(2)將(1)的化為頂點式解析式即可得到的最大值,由,的最大值相等,即可求出答案;
(3)將x=30代入、,再分三種情況求解即可.
解:(1)設材料費,施工費,
由題意,得
∵時,;時,,
∴,
解得,
∴.
;
(2)∵,∴的最大值為10000.
∵,的最大值相等,
∴,解得,.
∵,
∴;
(3)當時,;;
①當時,解得,即時,選擇甲方案獲得的利潤較大;
②當時,解得,選甲方案或乙方案獲得的利潤相同;
③當時,解得,即時,選擇乙方案獲得的利潤較大.
科目:初中數學 來源: 題型:
【題目】如圖,某中學數學活動小組在學習了“利用三角函數測高”后,選定測量小河對岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點E,A,C在同一水平線上,求建筑物BC的高.(結果用含有根號的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字40個,比賽結束后隨機抽查部分學生聽寫“正確的字數”,以下是根據抽查結果繪制的統(tǒng)計圖表.
頻數分布表
組別 | 正確的字數 | 人數 |
0.5~8.5 | 10 | |
8.5~16.5 | 15 | |
16.5~24.5 | 25 | |
24.5~32.5 | ||
32.5~40.5 |
根據以上信息解決下列問題:
(1)補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中“組”所對應的圓心角的度數是_________;
(3)若該校共有1210名學生,如果聽寫正確的字數少于25,則定為不合格;請你估計這所學校本次比賽聽寫不合格的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,小明在紙上畫折線,他每次都是按水平方向畫,再按豎直方向畫,且每次畫完后的兩條線段的長度相等,如果第次畫的兩條線段的長度都是,第次畫的兩條線段的長度都為,...,第次畫的兩條線段長度都是,請你回答下列問題,說明理由.
(1)畫完第次后,小明所畫的折線的總長度是多少?
(2)畫完第次后,小明所畫的折線的總長度是多少(用含的代數式表示)?
(3)當小明所畫的折線總長度為時,試求折線的最后兩條線段的長度和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若數k使關于x的不等式組只有4個整數解,且使關于y的分式方程+1=的解為正數,則符合條件的所有整數k的積為( )
A.2B.0C.﹣3D.﹣6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 請閱讀下列材料,并解答相應的問題:
將若干個數組成一個正方形數陣,若任意一行,一列及對角線上的數字之和都相等,則稱具有這種性質的數字方陣為“幻方”中國古代稱“幻方”為“河圖“、“洛書“等,例如,下面是三個三階幻方,是將數字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每條對角線上的三個數之和相等.
(1)設圖1的三階幻方中間的數字是x,用x的代數式表示幻方中9個數的和為 ;
(2)請你將下列九個數:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分別填入圖2方格中,使得每行、每列、每條對角線上的三個數之和都相等;
(3)圖3是一個三階幻方,那么標有x的方格中所填的數是 ;
(4)如圖4所示的每一個圓中分別填寫了1、2、3…19中的一個數字(不同的圓中填寫的數字各不相同),使得圖中每一個橫或斜方向的線段上幾個圓內的數之和都相等,現在已知該圖中七個圓內的數字,則圖中的x= ,y= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,點E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)若DF=BF,試判定四邊形DEBF是何種特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以的直角邊為直徑作交斜邊于點,連接并延長交的延長線于點,作交于點,連接.
(1)求證:
(2)求證:是的切線;
(3)若的半徑為,,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com