【題目】如圖,拋物線ybxc(a≠0)x軸交于點(diǎn)A(1,0)B,與y軸的正半軸交于點(diǎn)C.下列結(jié)論:①abc0;②4a2bc0;③2ab0;④3ac0.其中正確結(jié)論的個(gè)數(shù)為(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,進(jìn)而判斷①;根據(jù)x=2時(shí),y0可判斷②;根據(jù)x>1求出2ab的關(guān)系,進(jìn)而判斷③,由對(duì)稱軸x=12ab的關(guān)系可判斷④.

∵拋物線開口向下,

a<0,

∵點(diǎn)Cy軸左邊,

,即b<0 ,

abc0,故①正確;

當(dāng)x=-2時(shí),y=4a-2b+c>0,故②正確;

對(duì)稱軸在-1右側(cè),

b>2a,2a-b<0,故③錯(cuò)誤;

當(dāng)x=1時(shí),拋物線過x軸,即a+b+c=0,

-b=a+c,

2a-b<0,

2a+a+c<0,即3a+c<0,故④錯(cuò)誤;

故答案選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB10cm,弦BC5cm,D、E分別是∠ACB的平分線與⊙OAB的交點(diǎn),PAB延長(zhǎng)線上一點(diǎn),且PC=PE

1)求AC、AD的長(zhǎng);

2)試判斷直線PC⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課外實(shí)踐活動(dòng)中,小李同學(xué)在河邊的AB兩點(diǎn)處,利用測(cè)角儀分別對(duì)對(duì)岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭DAC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與反比例函數(shù)y=k≠0)在第一象限的圖象交于A1a)和B兩點(diǎn),與x軸交于點(diǎn)C

1)求反比例函數(shù)的解析式;

2)若點(diǎn)Px軸上,且△APC的面積為5,求點(diǎn)P的坐標(biāo);

3)若點(diǎn)Py軸上,是否存在點(diǎn)P,使△ABP是以AB為一直角邊的直角三角形?若存在,求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一勞動(dòng)節(jié)大酬賓!,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0”、“10”、“20“50的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購物券,購物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.

(1)該顧客至多可得到________元購物券

(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經(jīng)過點(diǎn)C,E⊙O上的一點(diǎn),且∠BEC=45°.

(1)試判斷CD⊙O的位置關(guān)系,并說明理由;

(2)若BE=8cm,sin∠BCE= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是1:將直線沿y向上平移后的直線與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,如果的面積為3,則平移后的直線的函數(shù)表達(dá)式為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+12ax+ca,c是常數(shù),且a≠0),過點(diǎn)(0,2).

1)求c的值,并通過計(jì)算說明點(diǎn)(24)是否也在該拋物線上;

2)若該拋物線與直線y5只有一個(gè)交點(diǎn),求a的值;

3)若當(dāng)0≤x≤2時(shí),yx的增大而增大,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EF分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是  

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案