【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,ABC的三個(gè)頂點(diǎn)A、BC都在格點(diǎn)上.

1)在圖1中畫出與ABC關(guān)于直線l成軸對(duì)稱的A1B1C1;

2)在圖1中直線l上找出一點(diǎn)Q,使得 QA+QC1的值最;

3)在圖1中直線l上找出一點(diǎn)P,使得 |PAPC1| 的值最大;

4)在圖2中,作一個(gè),E、F都在格點(diǎn)上,使線段BC為△BEF的角平分線

【答案】(1)見解析;(2)見解析;(3)見解析;(4)見解析.

【解析】

1)根據(jù)軸對(duì)稱圖形的性質(zhì)作圖即可;

2)根據(jù)兩點(diǎn)之間線段最短,連接A1、C1,與直線l的交點(diǎn)即為所求;

3)根據(jù)三角形兩邊之差小于第三邊的性質(zhì),可知連接A、C1,與直線l的交點(diǎn)即為所求;

4)根據(jù)等腰三角形三線合一的性質(zhì)可作圖.

如圖所示:

1

2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC中,∠A90°,ABAC,DBC邊上的中點(diǎn),E、F分別是AB、AC上的點(diǎn),且∠EDF90°,求證:BEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以邊長(zhǎng)為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于AB兩點(diǎn),則線段AB的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Ay軸正半軸上一點(diǎn),過點(diǎn)Ax軸的平行線,交函數(shù)的圖象于B點(diǎn),交函數(shù)的圖象于C,過Cy軸和平行線交BO的延長(zhǎng)線于D

(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長(zhǎng)度之比;

(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長(zhǎng)度之比;

(3)在(1)條件下,四邊形AODC的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:計(jì)算(其中m,n都是正整數(shù),且m2,n1).

探究問題:為解決上面的數(shù)學(xué)問題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.

探究一:計(jì)算

1次分割,把正方形的面積二等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

探究二:計(jì)算++++

1次分割,把正方形的面積三等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣,

兩邊同除以2,得++++=

探究三:計(jì)算++++

(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:計(jì)算++++

(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:_________,

所以, ++++=________

拓廣應(yīng)用:計(jì)算 ++++

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①如圖1,有一個(gè)三角形,它的內(nèi)角分別為:25°,50°,105°請(qǐng)你把這個(gè)三角形分成兩個(gè)等腰三角形.畫出你分割的示意圖并標(biāo)注必要的角度。

②如圖2,有兩個(gè)直角三角形,如圖所示,∠C=F=90°,∠A, B, D, E的度數(shù)分別是,它們互不相等。請(qǐng)你將這兩個(gè)三角形分別分割成兩個(gè)三角形,使所分成的兩個(gè)三角形與所分成的兩個(gè)三角形角度對(duì)應(yīng)相等。畫出你分割的示意圖并用字母標(biāo)注必要的角度。

③如圖3,在正方形所在平面內(nèi)找一點(diǎn),使其與正方形中的每一邊所構(gòu)成的三角形均為等腰三角形,這樣的點(diǎn)有________個(gè).

④如圖4,在等邊△ABC所在平面內(nèi)找一點(diǎn)Q,使其與等邊三角形中的每一邊所構(gòu)成的三角形均為等腰三角形,這樣的點(diǎn)有________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,在邊長(zhǎng)為1的正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A,B的坐標(biāo)分別是A(3,1),B(2,3).

(1)請(qǐng)?jiān)趫D中畫出△AOB關(guān)于y軸的對(duì)稱△AOB′,點(diǎn)A′的坐標(biāo)為  ,點(diǎn)B′的坐標(biāo)為  ;

(2)請(qǐng)寫出A′點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A′'的坐標(biāo)為  ;

(3)求△AOB′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)ADy軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點(diǎn)C的坐標(biāo)為(40),點(diǎn)EAC上一點(diǎn),且∠DEA=DBO,求BC+EC的長(zhǎng);

3)如圖3,過DDFACF點(diǎn),點(diǎn)HFC上一動(dòng)點(diǎn),點(diǎn)GOC上一動(dòng)點(diǎn),當(dāng)HFC上移動(dòng)、點(diǎn)GOC上移動(dòng)時(shí),始終滿足∠GDH=GDO+FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,學(xué)習(xí)了無理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴(kuò)大到了實(shí)數(shù)的范圍,這說明我們的知識(shí)越來越豐富了!可是,無理數(shù)究竟是一個(gè)什么樣的數(shù)呢?下面讓我們?cè)趲讉(gè)具體的圖形中認(rèn)識(shí)一下無理數(shù).

1)如圖①△ABC是一個(gè)邊長(zhǎng)為2的等腰直角三角形,它的面積是2,把它沿著斜邊的高線剪開拼成如圖②的正方形ABCD,則這個(gè)正方形的面積也就等于正方形的面積即為2,則這個(gè)正方形的邊長(zhǎng)就是,它是一個(gè)無理數(shù).

2)如圖,直徑為1個(gè)單位長(zhǎng)度的圓從原點(diǎn)O沿?cái)?shù)軸向右滾動(dòng)一周,圓上的一點(diǎn)P(滾動(dòng)時(shí)與點(diǎn)O重合)由原點(diǎn)到達(dá)點(diǎn)O′,則OO′的長(zhǎng)度就等于圓的周長(zhǎng),所以數(shù)軸上點(diǎn)O′代表的實(shí)數(shù)就是_____,它是一個(gè)無理數(shù).

3)如圖,在RtABC中,∠C=90°,AC=2,BC=1,根據(jù)已知可求得AB=_____,它是一個(gè)無理數(shù).好了,相信大家對(duì)無理數(shù)是不是有了更具體的認(rèn)識(shí)了,那么你也試著在圖形中作出兩個(gè)無理數(shù)吧:

①你能在6×8的網(wǎng)格圖中(每個(gè)小正方形邊長(zhǎng)均為1),畫出一條長(zhǎng)為的線段嗎?

②學(xué)習(xí)了實(shí)數(shù)后,我們知道數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的關(guān)系,那么你能在數(shù)軸上找到表示-的點(diǎn)嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案