【題目】如圖,由長(zhǎng)度為1個(gè)單位的若干小正方形組成的網(wǎng)格圖中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出與ABC關(guān)于直線l成軸對(duì)稱(chēng)的AB′C′;

2)三角形ABC的面積為  

3)以AC為邊作與ABC全等的三角形(只要作出一個(gè)符合條件的三角形即可);

4)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.

【答案】1畫(huà)圖見(jiàn)解析;(2SABC=3;(3作圖見(jiàn)解析;4作圖見(jiàn)解析

【解析】(1)分別作各點(diǎn)關(guān)于直線l的對(duì)稱(chēng)點(diǎn),再順次連接即可;(2)利用矩形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可;(3)根據(jù)勾股定理找出圖形即可;(4)連接B′C交直線l于點(diǎn)P,則P點(diǎn)即為所求.

解:(1)如圖,△AB′C′即為所求;

(2)S△ABC=2×4﹣×2×1﹣×1×4﹣×2×2=8﹣1﹣2﹣2=3.

故答案為:3;

(3)如圖,△AB1C,△AB2C,△AB3C即為所求.

故答案為:3;

(4)如圖,P點(diǎn)即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連結(jié)AD、AG。

(1)求證:AD=AG

(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第二屆紅色日記征文大賽于2020112日正式啟動(dòng),征文內(nèi)容分為兩部分:不忘初心紅色傳承.其中五位評(píng)委給參賽者小亮的征文評(píng)分分別為:8892、9093、88,則這組數(shù)據(jù)的眾數(shù)是 (  )

A.88B.90C.92D.93

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過(guò)點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P 從 A 出發(fā),在線段 AB 上沿 A B 的方向以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P PDy 于點(diǎn) D ,交拋物線于點(diǎn) C .設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).

1)求二次函數(shù)的表達(dá)式;

(2)連接 BC ,當(dāng)t時(shí),求BCP的面積;

(3)如圖 2,動(dòng)點(diǎn) P 從 A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線段 OA 上沿 OA 的方向以 1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P 與 B 重合時(shí),P 、 Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將DPQ沿直線 PC 折疊到 DPE .在運(yùn)動(dòng)過(guò)程中,設(shè) DPE OAB重合部分的面積為 S ,直接寫(xiě)出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華以8折的優(yōu)惠價(jià)錢(qián)買(mǎi)了一雙鞋子,比不打折時(shí)節(jié)省了20元,則他買(mǎi)這雙鞋子實(shí)際花了元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知當(dāng)x=1時(shí),式子ax3+bx+1值為5,則當(dāng)x=﹣1時(shí),式子ax3+bx+1值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果收入100元記作+100元,那么支出50元記作(  ).

A. -50 B. +50 C. +100 D. -100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016山西省第22題)綜合與實(shí)踐

問(wèn)題情境

在綜合與實(shí)踐課上,老師讓同學(xué)們以菱形紙片的剪拼為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖1,將一張菱形紙片ABCD()沿對(duì)角線AC剪開(kāi),得到

操作發(fā)現(xiàn)

(1)將圖1中的以A為旋轉(zhuǎn)中心,逆時(shí)針?lè)较蛐D(zhuǎn)角,使 ,得到如圖2所示的,分別延長(zhǎng)BC 交于點(diǎn)E,則四邊形的狀是

(2)創(chuàng)新小組將圖1中的以A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)角,使,得到如圖3所

示的,連接DB,,得到四邊形,發(fā)現(xiàn)它是矩形.請(qǐng)你證明這個(gè)論;

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,量得圖3中BC=13cm,AC=10cm,然后提出一個(gè)問(wèn)題:將沿著射線DB方向平移acm,得到,連接,,使四邊形恰好為正方形,求a的值.請(qǐng)你解答此問(wèn)題;

(4)請(qǐng)你參照以上操作,將圖1中的在同一平面內(nèi)進(jìn)行一次平移,得到,在圖4中畫(huà)出平移后構(gòu)造出的新圖形,標(biāo)明字母,說(shuō)明平移及構(gòu)圖方法,寫(xiě)出你發(fā)現(xiàn)的結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

(1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對(duì)稱(chēng)點(diǎn)Q,連接AQ、QC、CP、PA,并直接寫(xiě)出四邊形AQCP的周長(zhǎng);

(2)在圖2中畫(huà)出一個(gè)以線段AC為對(duì)角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案