已知二次函數(shù)圖象頂點為C(1,0),直線與該二次函數(shù)交于A,B兩點,其中A點(3,4),B點在y軸上.

(1)求此二次函數(shù)的解析式;
(2)P為線段AB上一動點(不與A,B重合),過點P作y軸的平行線與二次函數(shù)交于點E.設(shè)線段PE長為h,點P橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式;
(3)D為線段AB與二次函數(shù)對稱軸的交點,在AB上是否存在一點P,使四邊形DCEP為平行四邊形?若存在,請求出P點坐標(biāo);若不存在,請說明理由.

(1);(2);(3)存在,P點坐標(biāo)為(2,3).

解析試題分析:(1)因為直線y=x+m過點A,將A點坐標(biāo)直接代入解析式即可求得m的值;設(shè)出二次函數(shù)的頂點式,將(3,4)代入即可;
(2)由于P和E的橫坐標(biāo)相同,將P點橫坐標(biāo)代入直線和拋物線解析式,可得其縱坐標(biāo)表達(dá)式;
(3)先假設(shè)存在點P,根據(jù)四邊形DCEP是平行四形的條件進(jìn)行推理,若能求出P點坐標(biāo),則證明存在點P,否則P點不存在.
試題解析:(1)把A(3,4)代入
得m=1,
 ,
∴B(0,1),
設(shè)二次函數(shù)解析式為,
把A.B.C三點坐標(biāo)代入得

解得
;
(2)∵P點在直線的圖象上,
∴P點坐標(biāo)為(,),
∵E點在拋物線的圖象上,
∴E點坐標(biāo)為(,),
;
(3)存在.
易求D點坐標(biāo)為(1,2),則DC="2" ,
當(dāng)PE=2時,PEDC,四邊形DCEP為平行四邊形,
 解得,,
當(dāng)時,PE與DC重合,
當(dāng)時,代入,
∴ P點坐標(biāo)為(2,3).
考點:二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y (元).
(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少元?(參考關(guān)系:銷售額=售價×銷量,利潤=銷售額﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點A(2,-3),B(-1,0).
(1)求二次函數(shù)的解析式;
(2)觀察函數(shù)圖象,要使該二次函數(shù)的圖象與軸只有一個交點,應(yīng)把圖象沿軸向上平移幾個單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線軸于A(2,0),B(6,0)兩點,交軸于點C(0,).

(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點D,作⊙D與x軸相切,⊙D交軸于點E、F兩點,求劣弧EF所對圓心角的度數(shù);
(3)P為此拋物線在第二象限圖像上的一點,PG垂直于軸,垂足為點G,試確定P點的位置,使得△PGA的面積被直線AC分為1︰2兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

正常水位時,拋物線拱橋下的水面寬為BC=20m,水面上升3m達(dá)到該地警戒水位DE時,橋下水面寬為10m.若以BC所在直線為x軸,BC的垂直平分線為y軸,建立如圖所示的平面直角坐標(biāo)系.

(1)求橋孔拋物線的函數(shù)關(guān)系式;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么達(dá)到警戒水位后,再過多長時間此橋孔將被淹沒;
(3)當(dāng)達(dá)到警戒水位時,一艘裝有防汛器材的船,露出水面部分的寬為4m,高為0.75m,通過計算說明該船能否順利通過此拱橋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園與墻平行的一邊長為x(m),花園的面積為y(m2)。
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由:
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).

(1)求m的值及點A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當(dāng)點E′落在該二次函數(shù)的圖象上時,求AA′的長;
②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標(biāo);
③當(dāng)A′B+BE′取得最小值時,求點E′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).
(1)b=        ,c=         ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫下表,并在右圖的直角坐標(biāo)系中畫出該函數(shù)的圖像;

x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若將此圖象沿x軸向左平移3個單位,直接寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式           .

查看答案和解析>>

同步練習(xí)冊答案