已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0).
(1)求二次函數(shù)的解析式;
(2)觀察函數(shù)圖象,要使該二次函數(shù)的圖象與軸只有一個(gè)交點(diǎn),應(yīng)把圖象沿軸向上平移幾個(gè)單位?
(1) y=x2-2x-3;(2)4.
解析試題分析:(1)把點(diǎn)A、B的坐標(biāo)代入二次函數(shù)解析式求出a、b的值,即可得解;
(2)先求出原二次函數(shù)圖象的頂點(diǎn)點(diǎn)坐標(biāo),然后根據(jù)向上平移橫坐標(biāo)不變,縱坐標(biāo)加解答.
試題解析:(1)∵二次函數(shù)y=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0),
∴,
解得,
故二次函數(shù)解析式為y=x2-2x-3;
(2)∵y=x2-2x-3=(x-1)2-4
∴拋物線的頂點(diǎn)坐標(biāo)為(1,-4)
故要使該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),應(yīng)把圖象沿y軸向上平移4個(gè)單位.
考點(diǎn): 1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)圖象與幾何變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點(diǎn)M,過M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似.若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知一個(gè)二次函數(shù)的圖像經(jīng)過點(diǎn)(4,1)和(,6).
(1)求這個(gè)二次函數(shù)的解析式;
(2)求這個(gè)二次函數(shù)圖像的頂點(diǎn)坐標(biāo)和對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)分別求出點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線y=ax2+2x+c與其對(duì)稱軸相交于點(diǎn)A(1,4),與x軸正半軸交于點(diǎn)B.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)在拋物線對(duì)稱軸上確定一點(diǎn)C,使△ABC是等腰三角形,求出所有點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線過x軸上兩點(diǎn)A(9,0),C(-3,0),且與y軸交于點(diǎn)B(0,-12).
(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位沿射線AC方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位沿射線BA方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).問當(dāng)t為何值時(shí),△APQ∽△AOB?
(3)若M為線段AB上一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
②當(dāng)點(diǎn)M運(yùn)動(dòng)到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBNA面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖是一座古拱橋的截面圖.在水平面上取點(diǎn)為原點(diǎn),以水平面為軸建立直角坐標(biāo)系,橋洞上沿形狀恰好是拋物線的圖像.橋洞兩側(cè)壁上各有一盞距離水面4米高的景觀燈.請(qǐng)求出這兩盞景觀燈間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)圖象頂點(diǎn)為C(1,0),直線與該二次函數(shù)交于A,B兩點(diǎn),其中A點(diǎn)(3,4),B點(diǎn)在y軸上.
(1)求此二次函數(shù)的解析式;
(2)P為線段AB上一動(dòng)點(diǎn)(不與A,B重合),過點(diǎn)P作y軸的平行線與二次函數(shù)交于點(diǎn)E.設(shè)線段PE長為h,點(diǎn)P橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式;
(3)D為線段AB與二次函數(shù)對(duì)稱軸的交點(diǎn),在AB上是否存在一點(diǎn)P,使四邊形DCEP為平行四邊形?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一條拋物線經(jīng)過原點(diǎn)和點(diǎn)C(8,0),A、B是該拋物線上的兩點(diǎn),AB∥x軸,OA=5,AB=2.點(diǎn)E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過點(diǎn)A,另一邊交線段BC于點(diǎn)F,連接AF.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);
(3)當(dāng)△AEF是等腰三角形時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com