【題目】如圖,在菱形ABCD中,AB=8,∠B=60°,P是AB上一點(diǎn),BP=5,Q是CD邊上ー動點(diǎn),將四邊形APQD沿直線PQ折疊,A的對應(yīng)點(diǎn)A`.當(dāng)CA`的長度最小時(shí),則CQ的長為( )
A. 7B. 2C. 2D. 4
【答案】A
【解析】
由A`P=3可知點(diǎn)A`在以P為圓心以PA`為半徑的弧上,故此當(dāng)C,P,A`在一條直線上時(shí),CA`有最小值,過點(diǎn)C作CH⊥AB,垂足為H,先求得BH、HC的長,則可得到PH的長,然后再求得PC的長,最后依據(jù)折疊的性質(zhì)和平行線的性質(zhì)可證明△CQP為等腰三角形,則可得到Q℃的長
如圖所示:過點(diǎn)C作CH⊥AB,垂足為H
在Rt△BCH中,∠B=60°,BC=8,則
BH= BC=4,CH=sin60°BC=8=4 .
∴PH=1
在Rt△CPH中,依據(jù)勾股定理可知
PC=
由翻折的性質(zhì)可知:∠APQ=∠A'PQ
∵DC∥AB
∴∠CQP=∠APQ
∴∠CQP=∠CPQ.
∴QC=CP=7.
故選:A
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx﹣1交y軸于點(diǎn)B,交x軸于點(diǎn)C,以BC為邊的正方形ABCD的頂點(diǎn)A(﹣1,a)在雙曲線y=﹣(x<0)上,D點(diǎn)在雙曲線y=(x>0)上,則k的值為( 。
A. 6 B. 5 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD=∠ABC,補(bǔ)充一個(gè)條件,使得△ABD≌△ABC,則下列選項(xiàng)不符合題意的是( 。
A. ∠D=∠CB. ∠DAB=∠CABC. BD=BCD. AD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠AOB=70°,以點(diǎn)O為圓心,以適當(dāng)長為半徑作弧分別交OA,OB于C,D兩點(diǎn);分別以C,D為圓心,以大于CD的長為半徑作弧,兩弧相交于點(diǎn)P;以O為端點(diǎn)作射線OP,在射線OP上取點(diǎn)M,連接MC、MD.若測得∠CMD=40°,則∠MDB=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝“五四”青年節(jié),我市某中學(xué)舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)成績(滿分為100分),并制作成圖表如下
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)這次隨機(jī)抽查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對應(yīng)扇形的圓心角的度數(shù)是 ;
(4)全校共有600名學(xué)生參加比賽,估計(jì)該校成績不低于80分的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山坡上旗桿CD的高度,小明在點(diǎn)A處利用測角儀測得旗桿頂端D的仰角為37°,然后他沿著正對旗桿CD的方向前進(jìn)17m到達(dá)B點(diǎn)處,此時(shí)測得旗桿頂部D和底端C的仰角分別為58°和30°,求旗桿CD的高度(結(jié)果精確到0.1m).
(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組.請結(jié)合題意填空,完成本題的解答
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若方程的兩實(shí)數(shù)根x1,x2滿足|x1|+|x2|=x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com