【題目】閱讀下面的文字,解答問題.
如圖,在平面直角坐標(biāo)系中,點D的坐標(biāo)是(﹣3,1),點A的坐標(biāo)是(4,3).
(1)點B和點C的坐標(biāo)分別是________、________.
(2)將△ABC平移后使點C與點D重合,點A、B分別與點E、F重合,畫出△DEF.并直接寫出E點的坐標(biāo) ,F點的坐標(biāo) .
(3)若AB上的點M坐標(biāo)為(x,y),則平移后的對應(yīng)點M′的坐標(biāo)為___ _____.
(4)求的面積.
【答案】(1)(3,1);(1,2);(2)圖詳見解析,點E坐標(biāo)為(0,2),點F坐標(biāo)為(﹣1,0);(3)(x﹣4,y﹣1);(4)2.5.
【解析】
(1)根據(jù)直角坐標(biāo)系直接寫出B,C的坐標(biāo);(2)根據(jù)△ABC平移后使點C與點D重合,得出平移的規(guī)律,再把A,B進行平移,再連接得到△DEF,即可寫出E,F的坐標(biāo);(3)根據(jù)平移的規(guī)律即可寫出;(4)根據(jù)割補法即可求出△ABC的面積.
解:(1)(3,1);(1,2)
(2)解:如圖所示,△DEF即為所求. 點E坐標(biāo)為(0,2),點F坐標(biāo)為(﹣1,0).
(3)(x﹣4,y﹣1)
(4)將補成長方形,減去3個直角三角形的面積得:
=6-1.5-1-1
=2.5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.
已知:直線及直線外一點.
求作:,使得.
作法:如圖,
①在直線上取一點,作射線,以點為圓心,長為半徑畫弧,交的延長線于點;
②在直線上取一點(不與點重合),作射線,以點為圓心,長為半徑畫弧,交的延長線于點;
③作直線.
所以直線就是所求作的直線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵_______,_______,
∴(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC,如圖,過點A作AF⊥AB,并截取AF=BD,連接DC、DF、CF.
(1)求證:△FAD≌△DBC;
(2)判斷△CDF的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)求證:該方程有兩個實數(shù)根;
(2)若該方程的兩個實數(shù)根、滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,的平分線交于,是的垂直平分線,點為垂足,的延長線與的延長線相交于點,連結(jié),已知,,則圖中長為4的線段有( )
A. 5條B. 4條C. 3條D. 2條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD 交 BC于點 D,過點 D 作 DE⊥AD 交 AB 于點 E,以 AE 為直徑作⊙O.
(1)求證:BC 是⊙O 的切線;
(2)若 AC=3,BC=4,求 BE 的長.
(3)在(2)的條件中,求 cos∠EAD 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請在圖2的方格中畫出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實線)
(2)若要用大小相同的小立方塊搭一個幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫的形狀圖相同,則搭這樣的一個幾何體最多需要 個小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A,B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB.
(2)如圖2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計算圖中實線所圍成的圖形的面積S= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com