【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB、BC于點(diǎn)E、F、G,連接ED、DG.

(1)請(qǐng)判斷四邊形EBGD的形狀,并說明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,求GC的長.

【答案】(1)四邊形EBGD是菱形.理由見解析;(2)1+

【解析】試題分析:(1)結(jié)論四邊形EBGD是菱形.只要證明BE=ED=DG=GB即可.

(2)作DH⊥BCH,由四邊形EBGD為菱形ED=DG=2,求出GH,CH即可解決問題.

試題解析:(1)四邊形EBGD是菱形.

理由:∵EG垂直平分BD,

∴EB=ED,GB=GD,

∴∠EBD=∠EDB,

∵∠EBD=∠DBC,

∴∠EDF=∠GBF,

△EFD△GFB中,

,

∴△EFD≌△GFB,

∴ED=BG,

∴BE=ED=DG=GB,

四邊形EBGD是菱形.

(2)作DH⊥BCH,

四邊形EBGD為菱形ED=DG=2,

∴∠ABC=30°,∠DGH=30°,

DH=1,GH=,

∵∠C=45°,

∴DH=CH=1,

CG=GH+CH=1+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】am8,an2,則am﹣2n的值等于(  )

A. 1B. 2C. 4D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師和李老師住在同一個(gè)小區(qū),離學(xué)校3000米,某天早晨,張老師和李老師分別于7點(diǎn)10分、7點(diǎn)15分離家騎自行車上班,剛好在校門口遇上,已知李老師騎車的速度是張老師的1.2倍,求他們各自騎自行車的速度分別是多少米/分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正多邊形的的每個(gè)內(nèi)角為120°,則這個(gè)正多邊形的邊數(shù)是( ).

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在他家里的時(shí)鐘上安裝了一個(gè)電腦軟件,他設(shè)定當(dāng)鐘聲在n點(diǎn)鐘響起后,下一次則在(3n﹣1)小時(shí)后響起,例如鐘聲第一次在3點(diǎn)鐘響起,那么第2次在(3×3﹣1=8)小時(shí)后,也就是11點(diǎn)響起,第3次在(3×11﹣1=32)小時(shí)后,即7點(diǎn)響起,以此類推…;現(xiàn)在第1次鐘聲響起時(shí)為2點(diǎn)鐘,那么第3次響起時(shí)為_____點(diǎn),第2017次響起時(shí)為_____點(diǎn)(如圖鐘表,時(shí)間為12小時(shí)制).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九邊形的內(nèi)角和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分別是E,F.求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,點(diǎn)D是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過點(diǎn)D作DE⊥BC交AB邊于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處,當(dāng)△AEF為直角三角形時(shí),求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c為常數(shù)a≠0)與x軸,y軸分別交于A,B,C三點(diǎn),已知A(-1,0),B(3,0),C(0,3),動(dòng)點(diǎn)E從拋物線的頂點(diǎn)點(diǎn)D出發(fā)沿線段DB向終點(diǎn)B運(yùn)動(dòng).
(1)直接寫出拋物線解析式和頂點(diǎn)D的坐標(biāo);
(2)過點(diǎn)E作EF⊥y軸于點(diǎn)F,交拋物線對(duì)稱軸左側(cè)的部分于點(diǎn)G,交直線BC于點(diǎn)H,過點(diǎn)H作HP⊥x軸于點(diǎn)P,連接PF,求當(dāng)線段PF最短時(shí)G點(diǎn)的坐標(biāo);
(3)在點(diǎn)E運(yùn)動(dòng)的同時(shí),另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿直線x=3向上運(yùn)動(dòng),點(diǎn)E的速度為每秒個(gè)單位長度,點(diǎn)Q速度均為每秒1個(gè)單位長度,當(dāng)點(diǎn)E到達(dá)終點(diǎn)B時(shí)點(diǎn)Q也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒,試問存在幾個(gè)t值能使△BEQ為等腰三角形?并直接寫出相應(yīng)t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案