【題目】平面直角坐標(biāo)系xOy中,直線yx+b與直線yx交于點Am,1).與y軸交于點B

1)求m的值和點B的坐標(biāo);

2)若點Cy軸上,且△ABC的面積是1,請直接寫出點C的坐標(biāo).

【答案】1m=2,B02);(2C0,-1)或(0,-3).

【解析】

1)依據(jù)一次函數(shù)圖象上點的坐標(biāo)特征,即可得到m的值和點B的坐標(biāo);

2)依據(jù)點Cy軸上,且ABC的面積是1,即可得到BC=1,進(jìn)而得出點C的坐標(biāo).

1)∵直線yx+b與直線yx交于點Am1),

m1,

m=2,

A2,1),

代入y=x+b,可得×2+b1

b=-2,

B0,-2).

2)點C0,-1)或C0,-3).理由:

∵△ABC的面積是1,點Cy軸上,

|BC|×2=1,

|BC=1,

又∵B0,-2),

C0,-1)或C0,-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 中,AB4,點 E為邊AD上一動點,連接 CE,以 CE為邊,作正方形CEFG(點D、FCE所在直線的同側(cè)),HCD中點,連接 FH

1)如圖 1,連接BEBH,若四邊形 BEFH 為平行四邊形,求四邊形 BEFH 的周長;

2)如圖 2,連接 EH,若 AE1,求EHF 的面積;

3)直接寫出點E在運動過程中,HF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形中,M為邊CB延長線上一點,過點A作直線AM,設(shè)∠BAM,點B關(guān)于直線AM的對稱點為點E,連接AE、DE,DEAM于點N

1)依題意補全圖形;當(dāng)α=30°時, 直接寫出∠AND的度數(shù);

2)當(dāng)α發(fā)生變化時,∠AND的度數(shù)是否發(fā)生變化?說明理由;

3)探究線段AN,ENDN的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】武勝縣白坪飛龍鄉(xiāng)村旅游度假村橙海陽光景點組織輛汽車裝運完三種臍橙共噸到外地銷售.按計劃,輛汽車都要裝運,每輛汽車只能裝運同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:

臍橙品種

每輛汽車運載量(噸)

每噸臍橙獲得(元)

設(shè)裝運種臍橙的車輛數(shù)為,裝運種臍橙的車輛數(shù)為,求之間的函數(shù)關(guān)系式;

如果裝運每種臍橙的車輛數(shù)都不少于輛,那么車輛的安排方案有幾種?

設(shè)銷售利潤為(元),求之間的函數(shù)關(guān)系式;若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學(xué)生人數(shù)為40,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=10,n=20,表示“足球”的扇形的圓心角是72度;

(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)快、慢兩車分別從相距360千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,快車到達(dá)乙地后,停留1小時,然后按原路原速返回,快車比慢車晚1小時到達(dá)甲地,快、慢兩車距各自出發(fā)地的路程y(千米)與出發(fā)后所用的時間x(小時)的關(guān)系如圖.

請結(jié)合圖象信息解答下列問題:

1)慢車的速度是   千米/小時,快車的速度是   千米/小時;

2)求m的值,并指出點C的實際意義是什么?

3)在快車按原路原速返回的過程中,快、慢兩車相距的路程為150千米時,慢車行駛了多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣5ax﹣4x軸于A,B兩點(點A位于點B的左側(cè)),交y軸于點C,過點CCDAB,交拋物線于點D,連接AC、AD,ADy軸于點E,且AC=CD,過點A作射線AFy軸于點F,AB平分∠EAF.

(1)此拋物線的對稱軸是   

(2)求該拋物線的解析式;

(3)若點P是拋物線位于第四象限圖象上一動點,求APF面積SAPF的最大值,以及此時點P的坐標(biāo);

(4)點M是線段AB上一點(不與點A,B重合),點N是線段AD上一點(不與點A,D重合),則兩線段長度之和:MN+MD的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD及等邊ABE,已知∠ABC=60°,EFAB,垂足為F,連接DF

1)求證:ABC≌△EAF;

2)試判斷四邊形EFDA的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案