【題目】如圖,在矩形中,,點邊上的中點,點邊上的動點.將沿AE折疊,點落在點處;將沿折疊,點落在點處.當的長度為__________時,點與點能重合.

【答案】

【解析】

由折疊的性質(zhì)可得:∠AME=B=90°,∠FNE=C=90°,∠AEF=BEC=90°,BE=ME,CE=NE,若點與點重合,則A、M、F三點共線,進而可得BE=CE,設DF=CF=x,利用勾股定理分別表示出AE2、EF2、AF2,由此可得關于x的方程,解方程即可求出x,進一步即得結(jié)果.

解:由折疊的性質(zhì)可得:∠AME=B=90°,∠FNE=C=90°,∠AEM=AEB,∠NEF=CEF,BE=MECE=NE,

若點與點重合,則A、M、F三點共線,則BE= ME=NE=CEAEF=BEC=90°,

BE=CE=2,

由于點邊的中點,可設DF=CF=x,則AB=CD=2x,

RtAEF中,由勾股定理,得:,

,解得:,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,,平分

1)說明:;(2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一個直角坐標系中作出y=x2,y=x2-1的圖象

(1)分別指出它們的開口方向、對稱軸以及頂點坐標;

(2)拋物線y=x2-1與拋物線y=x2有什么關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

(1)試作出△ABCC為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1B1C;

(2)以原點O為對稱中心,再畫出與△ABC關于原點O對稱的△A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為(4,4),(1,2)

(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;

(2)將△ABC向右平移2個單位長度,然后再向下平移3個單位長度,得到△A′B′C′,畫出平移后的△A′B′C′

(3)SA′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當x>﹣1時,y的值隨x值的增大而增大.

其中正確的結(jié)論有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線經(jīng)過第一、二、三象限,與軸交于點,點在這條直線上,連接,已知的面積等于1

1)求的值;

2)如果反比例函數(shù)y=(k是常量,k≠0)的圖象經(jīng)過點A,求這個反比例函數(shù)的解析式。

查看答案和解析>>

同步練習冊答案