【題目】在同一個(gè)直角坐標(biāo)系中作出y=x2,y=x2-1的圖象.
(1)分別指出它們的開(kāi)口方向、對(duì)稱軸以及頂點(diǎn)坐標(biāo);
(2)拋物線y=x2-1與拋物線y=x2有什么關(guān)系?
【答案】見(jiàn)解析
【解析】試題分析:觀察圖像結(jié)合函數(shù)表達(dá)式可以得到兩個(gè)函數(shù)開(kāi)口向上,對(duì)稱軸也都是y軸,頂點(diǎn)坐標(biāo)分別是(0,0),(0,-1);根據(jù)二次函數(shù)的性質(zhì)及圖像知道拋物線y=x2-1與拋物線y=x2形狀相同,對(duì)稱軸相同,但是位置不同,開(kāi)口方向也相同,所以可以得到拋物線y=x2-1可由拋物線y=x2向下平移1個(gè)單位長(zhǎng)度得到的。
解:如圖所示:
(1)拋物線y=x2開(kāi)口向上,對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)(0,0);
拋物線y=x2-1開(kāi)口向上,對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)(0,-1).
(2)拋物線y=x2-1可由拋物線y=x2向下平移1個(gè)單位長(zhǎng)度得到.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB 所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標(biāo)系,若OA2+OB2= 17, 且線段OA、OB的長(zhǎng)度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個(gè)根.
(1)求C點(diǎn)的坐標(biāo);
(2)以斜邊AB為直徑作圓與y軸交于另一點(diǎn)E,求過(guò)A、B、E 三點(diǎn)的拋物線的關(guān)系式,并畫(huà)出此拋物線的草圖.
(3)在拋物線上是否存在點(diǎn)P,使△ABP與△ABC全等?若存在,求出符合條件的P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠接到一批服裝加工業(yè)務(wù),若由甲車間獨(dú)做,可比規(guī)定時(shí)間提前8天完成,甲車間在制作完這批服裝的60%后因另有任務(wù),立即將剩余服裝全部交給乙車間,結(jié)果剛好按規(guī)定時(shí)間完成.已知甲、乙兩個(gè)車間每天分別制作200和120件服裝,求該工廠所接的這批服裝的件數(shù)和規(guī)定時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)計(jì)算甲、乙兩人射擊成績(jī)的平均數(shù).
(2)計(jì)算甲、乙兩人的射擊成績(jī)的方差,并說(shuō)明誰(shuí)的成績(jī)更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O與AC相切于點(diǎn)A,且AB=AC,BC與⊙O相交于點(diǎn)D,下列說(shuō)法不正確的是().
A. ∠C = 45° B. CD=BD C. ∠BAD=∠DAC D. CD=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對(duì)學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問(wèn)題:
(1)求被抽樣調(diào)查的學(xué)生有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校共有1850名學(xué)生,請(qǐng)估計(jì)該校每天戶外活動(dòng)時(shí)間超過(guò)1小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下面證明過(guò)程補(bǔ)充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平行∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:因?yàn)?/span>BE、DF分別平分∠ABC、∠ADC,( ).
所以∠1=∠ABC,∠3=∠ADC( ).
因?yàn)椤?/span>ABC=∠ADC(已知),
所以∠1=∠3( ),
因?yàn)椤?/span>1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,以AB為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接OD、DE.
⑴ 求證:OD⊥DE.
⑵ 若∠BAC=30°,AB=8,求陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com