【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.

(1)求該拋物線的解析式;

(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.

(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.

【答案】(1)y=﹣x2+4x;(2)、10;(3)N12+2﹣4),N22﹣2,﹣4

【解析】試題分析:(1)、根據(jù)旋轉(zhuǎn)的性質(zhì)可求出C的坐標和A的坐標,又因為拋物線經(jīng)過原點,故設(shè)y=ax2+bx把(2,4),(4,0)代入,求出ab的值即可求出該拋物線的解析式;(2)、四邊形PEFM的周長有最大值,設(shè)點P的坐標為Pa,﹣a2+4a)則由拋物線的對稱性知OE=AF,所以EF=PM=4﹣2a,PE=MF=﹣a2+4a,則矩形PEFM的周長L=2[4﹣2a+﹣a2+4a]=﹣2a﹣12+10,利用函數(shù)的性質(zhì)即可求出四邊形PEFM的周長的最大值;(3)、在拋物線上存在點N,使O(原點)、C、H、N四點構(gòu)成以OC為一邊的平行四邊形,由(1)可求出拋物線的頂點坐標,過點Cx軸的平行線,與x軸沒有其它交點,過y=﹣4x軸的平行線,與拋物線有兩個交點,這兩個交點為所求的N點坐標所以有﹣x2+4x=﹣4,解方程即可求出交點坐標.

試題解析:(1)、因為OA=4,AB=2,把△AOB繞點O逆時針旋轉(zhuǎn)90°,

可以確定點C的坐標為(24);由圖可知點A的坐標為(4,0),

又因為拋物線經(jīng)過原點,故設(shè)y=ax2+bx把(2,4),(4,0)代入,得,解得

所以拋物線的解析式為y=﹣x2+4x;

(2)、四邊形PEFM的周長有最大值,理由如下:

由題意,如圖所示,設(shè)點P的坐標為Pa﹣a2+4a)則由拋物線的對稱性知OE=AF

∴EF=PM=4﹣2a,PE=MF=﹣a2+4a,

則矩形PEFM的周長L=2[4﹣2a+﹣a2+4a]=﹣2a﹣12+10,

當(dāng)a=1時,矩形PEFM的周長有最大值,Lmax=10;

(3)、在拋物線上存在點N,使O(原點)、C、H、N四點構(gòu)成以OC為一邊的平行四邊形,理由如下:

∵y=﹣x2+4x=﹣x﹣22+4可知頂點坐標(2,4),

知道C點正好是頂點坐標,知道C點到x軸的距離為4個單位長度,

過點Cx軸的平行線,與x軸沒有其它交點,過y=﹣4x軸的平行線,與拋物線有兩個交點,

這兩個交點為所求的N點坐標所以有﹣x2+4x=﹣4 解得x1=2+,x2=2﹣

∴N點坐標為N12+,﹣4),N22﹣,﹣4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,書桌上的一種新型臺歷和一塊主板AB、一個架板AC和環(huán)扣(不計寬度,記為點A)組成,其側(cè)面示意圖為△ABC,測得AC⊥BC,AB=5cm,AC=4cm,現(xiàn)為了書寫記事方便,須調(diào)整臺歷的擺放,移動點C至C′,當(dāng)∠C′=30°時,求移動的距離即CC′的長(或用計算器計算,結(jié)果取整數(shù),其中 =1.732, =4.583)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去括號正確的是( )
A.﹣(2a+b﹣c)=2a+b﹣c
B.﹣2(a+b﹣4c)=﹣2a﹣2b+8c
C.﹣(﹣a﹣b+2c)=﹣a+b+2c
D.﹣(a﹣b﹣c)=﹣a+b﹣c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的腰長是6,則底邊長3,周長為______________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要使等式(x﹣y)2+M=(x+y)2成立,整式M應(yīng)是( 。

A. 2xy B. 4xy C. ﹣4xy D. ﹣2xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項式2x2﹣8因式分解的結(jié)果是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)(﹣2)3+( 2×22﹣(π﹣2)0
(2)5x2y÷(﹣ xy)3xy2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行社會主義核心價值觀演講比賽,學(xué)校對30名參賽選手的成績進行了分組統(tǒng)計,結(jié)果如下表:

分數(shù)x(分)

4≤x5

5≤x6

6≤x7

7≤x8

8≤x9

9≤x10

頻數(shù)

2

6

8

5

5

4

由上可知,參賽選手分數(shù)的中位數(shù)所在的分數(shù)段為( 。

A. 5≤x6B. 6≤x7C. 7≤x8D. 8≤x9

查看答案和解析>>

同步練習(xí)冊答案