【題目】如圖:在△ABC中,AD∠BAC的平分線,DE⊥ACE,DF⊥ABF,且FB=CE,則下列結(jié)論:①DE=DF②AE=AF,③BD=CD④AD⊥BC。其中正確的個(gè)數(shù)有( )

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

【答案】D

【解析】

試題由AD∠BAC的平分線,DE⊥ACE,DF⊥ABF,結(jié)合公共邊AD,可證得△ADF≌△ADE,根據(jù)全等三角形的性質(zhì)再結(jié)合FB=CE,依次分析個(gè)小題即可.

∵AD∠BAC的平分線,

∴∠BAD=∠CAD

∵DE⊥AC,DF⊥AB

∴∠AFD=∠AED=90°

∵AD=AD

∴△ADF≌△ADE

∴DE=DFAE=AF

∵FB=CE

∴AB=AC

∵∠BAD=∠CAD,AD=AD

∴△ABD≌△ACD

∴BD=CD,∠ADB=∠ADC=90°

∴AD⊥BC

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.AC、BC兩邊垂直平分線的交點(diǎn)處

C.ACBC兩邊高線的交點(diǎn)處

D.AC、BC兩邊中線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩角分別相等的兩個(gè)三角形___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若四邊形ABCD∽四邊形A′B′C′D′,AB=6,A′B′=8,∠A=45°,B′C′=8,CD=4,則下列說法錯(cuò)誤的是( )

A. A′=45°

B. 四邊形ABCD′與四邊形ABCD的相似比為

C. BC=6

D. CD′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線OMON上運(yùn)動(dòng),BE平分∠ABNBE的反向延長線與∠BAO的平分線交于點(diǎn)C.

(1)當(dāng)點(diǎn)A,B移動(dòng)后,∠BAO=45°時(shí),∠C=________;

(2)當(dāng)點(diǎn)A,B移動(dòng)后,∠BAO=60°時(shí),∠C=________;

(3)(1)(2)猜想∠C是否隨點(diǎn)A,B的移動(dòng)而發(fā)生變化,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在不等邊ABC中,PMAB,垂足為M,PNAC,垂足為N,且PM=PNQAC上,PQ=QA,下列結(jié)論.AN=AM,②QPAM,③△BMP≌△QNP,其中正確的是(

A.①②③B.①②C.②③D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市中小學(xué)全面開展陽光體育活動(dòng),某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項(xiàng)活動(dòng),為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:

1)這次被調(diào)查的學(xué)生共有 人.

2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整.

3)統(tǒng)計(jì)圖1B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是 度.

4)已知該校共有學(xué)生3600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡健美操的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)分別是,,關(guān)于軸對(duì)稱的圖形為

畫出并寫出點(diǎn)的坐標(biāo)為________;

寫出的面積為________;

點(diǎn)軸上,使的值最小,寫出點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EFBC于點(diǎn)D,AB于點(diǎn)E,CF=AE

(1)試探究,四邊形BECF是什么特殊的四邊形;

(2)當(dāng)的大小滿足什么條件時(shí),四邊形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.

(特別提醒:表示角最好用數(shù)字)

查看答案和解析>>

同步練習(xí)冊(cè)答案