【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為( )
A. B. C. 1 D.
【答案】B
【解析】
由平行四邊形性質(zhì)得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.
∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四邊形ABDE是平行四邊形,
∴AB=DE,
∴AB=DE=CD,即D為CE中點,
∵EF⊥BC,
∴∠EFC=90°,
∵AB∥CD,
∴∠ECF=∠ABC,
∴tan∠ECF=tan∠ABC=,
在Rt△CFE中,EF=,tan∠ECF===,
∴CF=,
根據(jù)勾股定理得,CE==,
∴AB=CE=,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個池塘,其底面是邊長為10尺的正方形,一個蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′.則這根蘆葦?shù)拈L度是( )
A. 10尺 B. 11尺 C. 12尺 D. 13尺
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在某小區(qū)隨機抽取了若干名居民開展主題為“打贏藍天保衛(wèi)戰(zhàn)”的環(huán)保知識有獎答卷活動(每名居民必須答卷且只答一份),并用得到的數(shù)據(jù)繪制了如圖所示的條形統(tǒng)計圖(得分為整數(shù),滿分為分,最低分為分)
請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查,一共抽取了多少名居民?
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和眾數(shù);
(3)社區(qū)決定對該小區(qū)名居民開展這項有獎答卷活動,得分者獲一等獎,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計需要準備多少份一等獎獎品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.
(1)求證:AB是☉O的切線;
(2)若∠A=60°,DF=,求☉O的直徑BC的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關系,如圖所示,結(jié)合圖象回答下列問題.
(1)農(nóng)民自帶的零錢是多少?
(2)試求降價前y與x之間的關系式
(3)由表達式你能求出降價前每千克的土豆價格是多少?
(4)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張平行四邊形紙片ABCD沿著線段EF折疊(點E、F分別在AB邊和BC邊上),使得點C落在點A處,點D落在點G出。
(1)如果連接EC,那么線段GE與EC在同一條直線上嗎?為什么?
(2)試判斷四邊形AFCE的形狀,并說明你是怎樣判斷的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com